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Abstract 

 

The present study used satellite images analysis to evaluation and characterization of land spatial 
variability in the Livezile-Dolat Protected Area, Timis County, Romania. Based on the spectral 

information, the indices NDVI, SAVI, NBR, GLI, GNDVI and CIgreen were calculated. On the basis of 

ISODATA algorithm, an unsupervised analysis was performed, and 15 classes resulted. The coefficient of 
variation (CV) expressed a high variability in terms of the surfaces size on the set of 15 obtained classes 

(CVClass=43.2658). Based on the NDVI index, 8 groups of values were obtained, covering an area of 

6,542.801 ha; 9 groups of values covering the surface of 6,555.21 ha in the case of SAVI, and 6 groups of 
values covering the area of 6,542.955 ha in the case of CIgreen were obtained. Data series for each index 

studied (654,361 values per series) were analyzed to evaluate the variance (V) and coefficient of 

variation (CV). The highest value of the variance was identified for the CIgreen index 

(VCIgreen=0.892885), and the lowest at the GLI index (VGLI=0.001912), the other indices having 
intermediate values of the variance (VGNDVI=0.013837, VNDVI=0.028027, VSAVI=0.063048). Based on the 

values of the coefficient of variation (CV), a high degree of spatial variability was found in the set of GLI 

index values (CVGLI=80.40968) and the lowest spatial variability in the GNDVI index data set 
(CVGNDVI=23.85455), and intermediate values for the other studied indices (CVNDVI=28.76762, 

CVSAVI=28.76861, CVCIgreen=57.57606). 
 

Key words: ISODATA, spatial variability, unsupervised classification, variation coefficient 

 

INTRODUCTION  
 

Terrestrial areas, by their specificity and 

complexity, have a high diversity and are 

studied at different levels of understanding, in 

relation to the issues addressed; from the 

global, national, regional level, to the level of 

administrative units, vegetative associations, 

farm, crop plot, or even soil unit, respectively 

agrochemical plot [15], [3], [25], [62], [60].  

The functionality of the natural ecosystems, 

the productivity and the performance of the 

agricultural ecosystems, are permanently 

studied in relation to the type of ecosystem 

(natural or anthropic), the level of technology, 

the factors of production, pedo climatic 

conditions, products specificity, the retail 

market etc. [8], [9], [50], [46], [42], [43], [45]. 

The facilities offered by "digitalization" are 

considered to have a very high potential for 

the optimization of agricultural production 

processes, technologies innovation, as 

management support decision in farm or 

environmental management [11]. Imaging 

analysis is increasingly present in studies, 

researches and evaluations of natural or 

agricultural ecosystems, as a result of the 

facilities and advantages it offers [67], [18], 

[19], [29], [23], [64]. 

In relation to the scale at which the analysis is 

performed, satellite images (Landsat, Sentinel 

2, MODIS etc.), aerial images (utility aircraft, 
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UAV), or real-time terrestrial images taken 

with high resolution cameras, fixed on 

different agricultural machines are used [12], 

[54], [70], [65]. Spectral cameras have 

evolved a lot, so the captured images are at 

high resolutions and more and more 

accurately capture the realities at the plant 

level, agricultural crops, or natural ecosystems 

[36], [56], [71]. 

In relation to the objectives pursued, the 

digitization and image analysis addressed 

topics at foliar level [10], [53], at plant level 

and plant communities [40], [49], at 

agricultural field level [41], [58]. Digitization 

is very useful for the analysis and decision-

making process in order to optimize the 

production process and can integrate and 

capitalize very efficiently various models and 

scenarios from experimental studies [51], 

[52]. 

Imaging analysis has found utility for floristic 

composition study, land classification and 

crop identification [24], [68], [39], plant 

health study [44], evaluation the plants 

response to stress factors [69], [32], [28], 

study of weed presence [63], [57], crop 

growth dynamics evaluation  [17], chlorophyll 

content measure [6], [7], physiological 

processes evaluation [26], estimation of 

biomass production [5], [20], or the study of 

rural or urban anthropic areas [37], [38]. 

Diversity and spatial variability of the land 

and the vegetal cover are faithfully reflected 

in the variation of the specific indices, which 

capture and quantify the level of hetero-

geneity of the studied area [59], [34], [2]. 

The present study used the imaging analysis 

based on the satellite images, for the analysis 

and characterization of a territory under the 

aspect of spatial variability in the area of

Livezile-Dolat, Timis County, Romania.  
 

MATERIALS AND METHODS  

 

The aim of the study was to analyze and 

characterize the spatial variability of a 

territory, based on satellite images, in the 

Sentinel 2 satellite system, a territory that 

includes a complex, agricultural, anthropic 

and natural territory, in the context of a 

protected natural area, Fig. 1. 

 

 
Fig. 1. Studied territory, Protected Natural Area Livezile-Dolat, Timis County, Romania 

Source: original map, generated with ArcGIS based on Sentinel 2 spectral data package [55]. 

 

Study area is located in the South West part of 

Timiș County, Romania and is characterized 

by a high degree of complexity, given by 

agricultural, anthropic and natural areas 

within the Natural Protected Area Livezile-

Dolat (Directive 2009/147/EC of the 
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European Parliament and of the Council of 30 

November 2009 on the conservation of wild 

birds - Birds Directive, Category of Special 

Bird Protection Area, code ROSPA0126). 

From an administrative point of view, the 

Livezile-Dolat studied area is included in the 

5 West Development Region, entirely on the 

territory of Timiș County, respectively 

variable distributed on the territory of five 

territorial administrative units: Livezile 

(65%), Ghilad (26%), Banloc (9 %), 

respectively Giera (<1%). The total area of 

the Livezile-Donat area is 6,565.00 ha [35], 

Fig. 1. 

In this study, the Sentinel 2 remote sensing 

system was used, more precisely a scene 

taken on the date of 27.05.2018. Sentinel 2 

represents the European Earth Observation 

Space mission that debuted in 2015. Sentinel 

2 satellites are positioned on a solar 

synchronous orbit at an altitude of 786 km 

and take images on 13 spectral bands, of 

which 5 in near infrared, at 10, 20 and 60 m 

spatial resolution, 10 days temporal 

resolution, and 12 bit radiometric resolution. 

The data format provided was jp2 and xml, 

and the footprint of the images is 290 x 290 

km [55]. 

The experimental data in the form of spectral 

information in the Red, Green, Blue, NIR 

bands were initially analyzed and processed to 

determine specific indices (NDVI, SAVI, 

NBR, GLI, GNDVI, and CIgreen). An 

unsupervised classification of digital images 

and territory was made. The type of 

distribution of the values of the studied 

indices, descriptive statistical parameters, 

correlation level, coefficient of variation, and 

variance were analyzed. 

ERDAS Ymage, and ArcGIS v.10.6 softwares 

was used for the analysis and processing of 

satellite images, and for the processing of 

experimental data, the PAST software [16] 

and STATISTICA were used.  

 

RESULTS AND DISCUSSIONS 

 

In the analysis of digital images, unsupervised 

classification implies the generation of pixel 

groups with specific geographical 

representation, but without knowing the 

reality that they classify. After the 

unsupervised classification obtained, the 

significance of the pixels in the analyzed 

digital image, expressed in the classes 

generated, is verified and confirmed with the 

reality in the field. 

The unsupervised classification is based on 

mathematical algorithms such as ISODATA 

(Iterative Self Organizing Data Analysis) and 

K-Means, and in the present study the 

classification was made based on the 

ISODATA algorithm [4]. The ISODATA 

algorithm for images analysis and 

classification is based on determining the 

minimum spectral distance for cluster 

formation, based on the affinity of the spectral 

information. 

The analysis and classification equation based 

on the spectral distances, is actually based on 

the equation used to determine the Euclidean 

distances, relation (1), [61], [33], [1]. 

 

( ) −
−=

n

1i

2

xyicixyc XSD   (1) 

 

where: n - number of bands; i - band number; 

c - particular class; xy iX  - data file value of 

pixel x, y in band i; 
ci  - mean of data file 

values (digital numbers) in band i for the 

sample the class c;  xy cDS  - spectral distance 

from pixels x, y to the mean of class c 

Of the 13 spectral bands provided by Sentinel 

2, in the present study for natural color 

imaging - RGB, spectral bands 4 (Red), 3 

(Green) and 2 (Blue) were used, which have a 

spatial resolution of 10 m.  

For false color image (NIR-Red-Green) 

spectral bands 8 (Nir), 4 (Red), and 3 (Green) 

were used. This image was subjected to an 

unsupervised classification, resulting in a 

number of 15 classes, with the configuration 

presented in table 1. The spatial distribution 

of the classes determined in the study area is 

presented in Fig. 2. 

Based on the spectral bands 8 (NIR1), 8a 

(NIR5), 12 (SWIR2), 4 (RED), 3 (GREEN, 

and 2 (BLUE), 6 indices were calculated for 

the characterization of the studied area.  

The Normalized Difference Vegetation Index 
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(NDVI) [47], [48], [66] was calculated based 

on relation (2). 

 

4BAND8BAND

4BAND8BAND

REDNIR

REDNIR
NDVI

+

−
=

+

−
=  (2) 

 

Table 1. The structure by classes and surfaces resulting 

from the unsupervised classification of the studied area 

(Protected Natural Area Livezile-Dolat, Timis County, 

Romania) 

Class Sum of Arias Percent 

1 213.33 3.25 

2 406.75 6.20 

3 316.41 4.83 

4 425.56 6.49 

5 261.84 3.99 

6 406.94 6.21 

7 500.98 7.64 

8 557.36 8.50 

9 730.11 11.13 

10 287.34 4.38 

11 794.57 12.12 

12 451.18 6.88 

13 661.04 10.08 

14 420.13 6.41 

15 123.66 1.89 

Total 6,557.2 100 

Source: original data, resulted by unsupervised 

classification of false color image generated by 

ArcGIS. 

 

 
Fig. 2. Unsupervised classification of the studied area 

(Protected Natural Area Livezile-Dolat, Timis County, 

Romania) 

Source: original map, generated based on false color 

image; Sentinel 2 spectral data package [55], ArcGIS 

software. 

 

The range of variation of the NDVI values, 

and the corresponding surfaces, are presented 

in table 2. Based on the NDVI index, an area 

of 6,542.801 ha was covered, compared to the 

total area of 6,565.00 ha, which represents 

99.66%. NDVI variation range, in relation to 

pixels number for studied area is presented in 

Fig. 3. The graphical representation of the 

NDVI index for the studied area, in the form 

of map, is presented in Fig. 4. 
  
Table 2. Range of variation and related area in case of 

NDVI index for the studied area (Protected Natural 

Area Livezile-Dolat, Timis County, Romania) 
Group Range of variation Area % 

1 -0.054886- 0.229541 314.7178 4.81 

2 0.229541 – 0.306792 349.843 5.35 

3 0.306792 – 0.384044 376.63 5.76 

4 0.384044 – 0.457784 467.1389 7.14 

5 0.457784 – 0.531524 585.3623 8.95 

6 0.531524 – 0.605265 704.0567 10.76 

7 0.605265 – 0.671982 1,015.168 15.51 

8 0.671982 – 0.724653 1,366.179 20.88 

9 0.724653 – 0.844042 1,363.706 20.84 

Total 6,542.801 100.00 

Source: original data, obtained by NDVI values 

analysis. 

 

 
Fig. 3. NDVI variation range in relation to pixels 

number for studied area 

Source: original graph, generated based on NDVI 
values, ArcGIS software. 

 

The Normalized Burn Ratio index (NBR) was 

determined according to the relation (3), [27]. 

Graphical distribution of NBR index values 

for the studied area, in the form of map, is 

presented in Fig. 5. 

 

12BANDa8BAND
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Fig. 4. Map with the spatial distribution of NDVI index 
values 

Source: original map, generated based on NDVI values,  

ArcGIS software. 

 

 
Fig. 5. Map with the spatial distribution of NBR index 

values 

Source: original map, generated based on NBR values, 
ArcGIS software. 

 

SAVI (Soil Adjusted Vegetation Index), 

relation (4), was proposed and developed as a 

modification of the vegetation index [21], 

with differences normalized in order to correct 

the influence of the soil luminosity in the 

conditions in which the vegetation land cover 

is low. 
 

)L1(
4BAND8BAND

4BAND8BAND
)L1(

LREDNIR

REDNIR
SAVI +

+

−
=+

++

−
=

; 

5.0L =      (4) 
 

The range of variation of the SAVI values and 

the corresponding surfaces are presented in 

table 3. SAVI variation range in relation to 

pixels number for studied area is presented in 

Fig. 6. 
 

Table 3. The range of variation and the related area in 

the case of the SAVI index for the studied area 

Group Range of variation Area % 

1 -0.082325 – 0.344284 315.31 4.81 

2 0.344284 – 0.460152 350.23 5.34 

3 0.460152 – 0.576021 377.76 5.76 

4 0.576021 – 0.686623 468.19 7.14 

5 0.686623 – 0.797226 586.54 8.95 

6 0.797226 – 0.907828 706.21 10.77 

7 0.907828 – 1.007896 1,017.4 15.52 

8 1.007896 – 1.086898 1,368.92 20.88 

9 1.086898 – 1.265968 1,364.65 20.82 

Total 6,555.21 100 

Source: original data, obtained by SAVI values 

analysis. 
 

 
Fig. 6. SAVI variation range in relation to pixels 

number for studied area 

Source: original graph, generated based on NBR 
values, ArcGIS software. 

 

Based on the SAVI index, an area of 6,555.21 

ha was covered, compared to the total area of 

6,565.00 ha, which represents 99.81%. The 

numerical values and the graphical 

distribution of the SAVI index express with 

high accuracy the situation in the studied area, 

in a variation interval between -0.082325 and 

1.265968. Graphical distribution of the SAVI 

index values for the studied area, in the form 

of map, is presented in Fig. 7. 
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Fig. 7. Map with the spatial distribution of SAVI index 

values 

Source: original map, generated based on SAVI values, 

ArcGIS software. 

 

 
Fig. 8. Map with the spatial distribution of GLI index 

values 

Source: original map, generated based on GLI index 

values, ArcGIS software. 

 

Green Leaf Index (GLI), was determined 

based on the relation (5), [31], [22]. GLI 

values range from -1 to +1. The negative 

values represent the soil and the "non-living 

features" of the soil, while the positive values 

represent the leaves and the green stems. 

Graphical distribution of the GLI index values 

for the studied area, in the form of map, is 

presented in Fig. 8. 

 

2BAND4BAND3BAND2

2BAND4BAND3BAND2

BLUEREDGREEN2

BLUEREDGREEN2
GLI

++

−−
=

++

−−
=

  (5) 

 

Green NDVI, relation (6), [13], [30], is 

similar to NDVI, except that it measures the 

green spectrum from 540 to 570 nm instead of 

the red spectrum. This index is more sensitive 

to chlorophyll concentration than NDVI. 
 

3BAND8BAND

3BAND8BAND

GREENNIR

GREENNIR
GNDVI

+

−
=

+

−
=

 (6) 

 

 
Fig. 9. Map with the spatial distribution of GNDVI 

index values 

Source: original map, generated based on GNDVI 

index values, ArcGIS Software. 

 

GNDVI uses the green band in the visible 

spectrum (instead of red as in the NDVI) and 



Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development  

Vol. 20, Issue 1, 2020 

PRINT ISSN 2284-7995, E-ISSN 2285-3952 

511 

the NIR band. The use of green band is useful 

for measuring photosynthesis rates and 

monitoring plant stress. The graphical 

distribution of the GNDVI index for the 

studied area, in the form of map, is presented 

in Fig. 9. 

Chlorophyll index green (CIgreen), relation 

(7), [14], [22], was used to estimate the 

chlorophyll content of leaves, in a wide range 

of plant species. 

 

1
3BAND

8BAND
1

GREEN

NIR
greenCI −=−=

  (7) 

 

The CIgreen marginal values are sensitive to 

small variations in chlorophyll content and are 

consistent with most species. The range of 

variation of CIgreen values and the 

corresponding area are presented in Table 4. 
 

Table 4. The range of variation and the related area in 

the case of the CIgreen index for the studied area 
Group Values Area (ha) Percentage 

1 -1 0.02 0.0003 

2 0.99 - 0 805.2145 12.3066 

3 0.001-1 2,023.497 30.9264 

4 1.01-2 0.00 0.00 

5 2.01-3 2,491.385 38.0774 

6 3.01-4 1,222.839 18.6894 

Total 6,542.955 100.00 

Source: original data, resulted by CIgreen values 

analysis. 

 

CIgreen variation range in relation to pixels 

number for studied area is presented in fig. 

10. Based on the CIgreen index, an area of 

6,542.955 ha was covered, compared to the 

total area of 6,565.00 ha, which represents 

99.66%. Graphical distribution of the CIgreen 

index values for the studied area, in the form 

of map, is presented in Fig. 11. 
 

 
Fig. 10. CIgreen variation range in relation to pixels 

number 
Source: original graph, generated based on CIgreen 

values, ArcGIS Software. 

 
Fig. 11. Map with the spatial distribution of CIgreen 

index values 

Source: original map, generated based on CIgreen 

index values, ArcGIS Software. 

 

Descriptive statistical analysis of the 

experimental data set for the indices used in 

the analysis and classification of the studied 

area (a total number of 654,361 data), led to 

the values presented in Table 5. From the 

analysis of the respective data, a high variance 

of the CIgreen index was found, and the 

coefficient of variation highlighted the highest 

value of the GLI index. The correlation 

analysis led to the data in table 6, and showed 

the existence of very high positive 

correlations between most indices, high 

correlation between GLI and GNDVI, 

respectively a medium level correlation 

between GLI and CIgreen. 
 

Table 5. Statistical parameters of the values of the 

studied indices  
 NDVI SAVI CIgreen GNDVI GLI 

N 654,361 654,361 654,361 654,361 654,361 

Min -0.05489 -0.08232 -1 -0.17163 -0.13755 

Max 0.844042 1.26597 4 0.706843 0.186921 

Mean 0.581945 0.872804 1.641178 0.493111 0.054374 

Std. error 0.000207 0.00031 0.001168 0.000145 5.40E-05 

Variance 0.028027 0.063048 0.892885 0.013837 0.001912 

Coeff. var 28.76762 28.76861 57.57606 23.85455 80.40968 

Source: original data, resulted from studied indices 

analysis. 
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Table 6. Correlation table between the values of the 

studied indices 
 NDVI SAVI Cigreen GNDVI GLI 

NDVI      

SAVI 0.999     

Cigreen 0.907 0.907    

GNDVI 0.982 0.982 0.933   

GLI 0.903 0.903 0.771 0.847  

Source: original data, resulted from studied indices 

analysis.  
 

CONCLUSIONS 

 

The unsupervised classification, based on the 

ISODATA algorithm, of a false color image 

(NIR-Red-Green), spectral bands 8 (Nir), 4 

(Red), and 3 (Green) resulted in 15 classes 

representing 6,557.2 ha from study area. 

Calculated indices (NDVI, SAVI, NBR, GLI, 

GNDVI, CIgreen) based on spectral data, 

bands 8 (NIR1), 8a (NIR5), 12 (SWIR2) and 

4 (RED), 3 (GREEN), 2 (BLUE) facilitated 

characterization of the territory, and they have 

faithfully surprised the spatial variability of 

the studied area. A high degree of spatial 

variability was found in the set of GLI index 

values (CVGLI = 80.40968) and the lowest 

spatial variability in the GNDVI index data 

set (CVGNDVI = 23.85455). 
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