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Abstract 

 

For the synoptic assessment of corn plants content of Ca, and K accurate monitoring of land surface dynamics using 

remote sensing is needed. We looked at a full resolution dataset from the Medium Resolution satellite Imaging 

(Sentinel-2) as an open source as an alternative to the costly high resolution the more widely used high-resolution 

satellite Imaging (Worldview2) data for vegetation monitoring. We compared Sentinel-2 image and Worldview 2 

data acquired in 2018 with in situ measured hyperspectral data and metal concentrations in plant samples collected 

from fields in the study area for this purpose. The current research was conducted on the experimental site during 

the 2018 corn cropping season (Zea Mayz). Results indicated that: The Difference Vegetation Index (DVI), the 

Enhanced Vegetation Index (EVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Leaf Area 

Index (LAI) were the more sensitive indicators to Ca and K above ground corn plants content. These VIs had R2 

values more than 0.5 with the in-situ measurements for the both images. DVI, EVI, and GNDVI performed well in 

estimating plant dry matter Ca and K content with R2 > 0.5, with a high significant level P-value < 0.001and LAI 

had a statistically significant impact with a P-value < 0.5 for WV2 image. The Sentinel-2 VIs performed well in 

estimating plant dry matter Ca and K content with R2 values > 0.5, with a high significant level P-value 0.001. LAI 

had a statistically significant impact with a P-value < 0.5 with Ca concentration and P-value < 0.01 with K 

concentration. This study suggests that the moderate resolution satellite images can be used for corn plants Ca and 

K content. 
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INTRODUCTION  
 

Plant stress can be tracked in the field using 

in-field spectroscopy, which is both time and 

cost efficient [19]. Remote sensing change 

detection (CD) is commonly defined as a 

process to identify differences in geographical 

surface phenomena over time [8, 2].  

Techniques of remote sensing (RS) have been 

shown to be a promising approach for crop 

development Observing [20], nutrition 

diagnosis, Identifying the geographical area, 

detecting and quantifying the types of 

changes, and finally determining the accuracy 

effects are all part of the general aim of 

change detection in remote sensing [11].  

This field has attracted a lot of effort in 

research due to its applications in various 

areas as Land-use and land-cover (LULC). 

Vegetation change, Crop monitoring, 

Environmental change and crop stress 

detection [5]. 

 Change detection (CD) on earth's surface is 

an active research topic since it can help in 

monitoring and optimal planning of Earth's 

resources and also help to arrest undesired 

changes. Any change detection system should 

be able to (a) define the change area and 

change rate; (b) distribution of change areas; 

(c) change trajectories; and (d) the accuracy 

assessment of the change detection methods 

[9].  

[10, 8] classified CD techniques into (1) 

comparative analyses based on post-classified 

data and (2) simultaneous analyses of 

multitemporal images. 

The conventional methods of soil 

contamination assessment in large areas 

involve field data collection, chemical 

analyses in a laboratory as well as 
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geostatistical interpolation, which are 

expensive and time-consuming. For instance 

according to [14]. 

Satellite image processing plays a vital role 

for research and developments in Astronomy, 

Remote Sensing, GIS, Agriculture 

Monitoring, Disaster Management, change 

detection and many other fields of study. 

Satellite images are recorded in digital forms 

and then processed by the computers to 

extract information. Variations in the scene 

characteristics are represented as variations in 

brightness on images. In Remote Sensing, 

change detection means assessing or 

measuring the change on the Earth's surface 

by jointly processing multi-temporal images 

of the same geographical area acquired at 

different times. 

[16] assessed a Medium Resolution Imaging 

Spectrometer (MERIS) full resolution dataset 

for vegetation monitoring as an alternative to 

the more commonly used Moderate-

Resolution Imaging Spectroradiometer 

(MODIS) data. Data from low and medium 

spatial resolution (SR) satellites are frequently 

used for land monitoring. These data are 

freely accessed on the web and provide for 

observing nearly the entire Earth’s surface in 

a 24-hour period. The major satellite systems 

providing such types of data are the Moderate 

Resolution Imaging Spectroradiometer 

(MODIS) 

This work indicates that optical sensors such 

as European constellations, such as the 

Sentinels can be used for change detection of 

corn plants content of Ca and K instead of the 

paid worldview 2 satellite imagery. 
 

MATERIALS AND METHODS  
 
Study area and data 

El- Mahalla Al-Kobra, El- Gharbia 

Governorate, Egypt (latitude 31o 06.620 N, 

longitude 31o 03.665 E) is the current study 

site in the Middle Nile Delta. A map of the 

research site is shown in Figure 1. Metals 

resulting from manufacturing activities have 

polluted certain areas of the studied location 

by storm water discharge points. The crops in 

these areas are irrigated by the main drain of 

El Gharbia. Factory contamination has 

contaminated the irrigation water from this 

drain (textile, oil and soap, printing and 

chemicals). 

Fig. 1. Study location 

Source: QGIS 2.18.3 software [July 2018] [3]. 

  

Satellite imagery 
Two different satellite imagery were used in 

this study for corn plants Ca and K content 

detection. The first image acquired from 

WorldView 2 sensor as a high spatial 

resolution image with 2m pixel spatial 

resolution. The second image was Sentinel 2 

image. It has been developed and is being 

operated by the European Space Agency.  The 

Sentinel-2 mission has 13 bands in 

the visible, near infrared, and short wave 

infrared part of the spectrum with three 

different spatial resolution 10, 20, and 60 m. 

The sensors specifications of the satellites 

summarised in Table 1. 

Methods 

The methodology considered of this paper is: 

(1) pre-processing of the original images. (2) 

processing and statistical analysis of the 

corresponding datasets, and (3) comparison of 

the results for the two images.  

The data preparation involved the resampling 

of the S2 bands acquired at 20 m to obtain a 

layer stack of 10 spectral bands at 10 m. The 

resulting objects were labeled using the 

reference data and exploited for training and 

validation. For the object-based classification, 

we used various band-specific metrics (Mean, 

Standard deviation, Min, Median, Max, 25th 

and 75th Percentile) extracted from the image 

objects. For the pixel-based classification, we 

used the reflectance in the ten spectral bands 

for each pixel. 

Reference data for the supervised 

classification were acquired in two ways: 

https://en.wikipedia.org/wiki/European_Space_Agency
https://en.wikipedia.org/wiki/Visible_spectrum
https://en.wikipedia.org/wiki/Infrared#Regions_within_the_infrared
https://en.wikipedia.org/wiki/Infrared#Regions_within_the_infrared
https://en.wikipedia.org/wiki/Infrared#Regions_within_the_infrared
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
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- during a field survey for the cropland test 

site, and 

- from inventory data and visual interpretation 

of high spatial resolution images for the test 

site. 

 
Table 1. Sensor’s specifications of WorldView 2 and 

Sentinel 2 Imagery  
Sensor 
 WorldView-2 

(WV2) 
ESA’s Sentinel 2 
satellite 

Acquisition date July 2018 July 2018 

Bands used 8 13 

Spectral range (nm) 450-800 visible and near-

infrared (VNIR) to the 
short-wave infrared 

(SWIR) 

Spatial resolution 
(m) 

2 10 

Source: WorldView 2 and Sentinel 2 Imagery, July 

2018 [18, 12]. 
 

A statistical analysis was run on the results. t-

test, regression analysis and the significancy 

test were run to find the most sensitive 

vegetation indices. DVI, EVI, GNDVI, and 

LAI were the most sensitive VIs to Ca and K 

concentration accumulated in above ground 

plant dry matter. Table 2 shows the VIs were 

determined using ENVI 5.3 software from the 

WV2 and Sentinel 2 images captured on July 

2018. 

 
Table 2. The most sensitive VIs were determined using 

ENVI 5.3 software from the WV2 and Sentinel 2 

images 

Vegetation 
index Apriviation Formula Reference 

Difference 
Vegetation 

Index 
DVI  [15] 

Enhanced 
Vegetation 

Index 
(EVI) 

 
[7] 

Green 
Normalized 
Difference 
Vegetation 

Index 

(GNDVI) 
 

[6] 

Leaf Area 
Index (LAI)  [1] 

Source: 

https://www.l3harrisgeospatial.com/docs/vegetationindi

ces.html, Accessed on July 2018 [17]. 

 

RESULTS AND DISCUSSIONS 
 
The WV2 and Sentinel 2 images captured on 

July 2018 for the summer crop (corn) shown 

in Fig. (2a and b). The most sensitive VIs 

shown in Table 2 correlation coefficients with 

in situ hyperspectral vegetation indices were 

computed. The correlation coefficient, 

regression analysis, and the P-value for this 

VIs are shown in Table 3. 

 

 

 
Fig.  2. (a) WorldView2 satellite image and (b) Sentinel 

2 satellite image for the study location 

Sources:  

(a) European space agency, July2018 [4]. 

(b)https://www.sentinel-hub.com/, July2018 [13]. 

 
Table 3. Validation results of regression coefficient for 

estimating in-situ hyperspectral vegetation indices 

depends on hyperspectral vegetation indices calculated 

from the images 

Source: WorldView2 data, July 2018 [18]. 

 
Using Worldview 2 image as a high spatial 
resolution satellite imagery for corn plants 
Calcium and Potassium content detection 

Table 4 demonstrates the regression analysis 

and the fitting models of the relationship 

between corn plants dry matter Ca and K 

In-situ 
VIs 

WorldView 2 Sentinel 2 

r R2 P-value r R2 P-value 

DVI 0.765 0.585 0.000*** 0.763 0.582 0.001** 

(EVI) 0.743 0.553 0.005** 0.749 0.561 0.008** 

(GNDVI) 0.823 0.675 0.329 0.876 0.767 0.2087 

(LAI) 0.897 0.805 0.002** 0.820 0.673 
0.000**

* 

a 

b 

https://www.l3harrisgeospatial.com/docs/vegetationindices.html,%20Accessed
https://www.l3harrisgeospatial.com/docs/vegetationindices.html,%20Accessed
https://www.sentinel-hub.com/
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content and the published vegetation indices 

extracted from the WV 2 image. The majority 

of vegetation indices had negative 

relationships with the concentration of both 

elements. With R2 values of 0.9013, 0.8019, 

0.8997, and 0.783 respectively, DVI, EVI, and 

GNDVI performed well in estimating plant 

dry matter Ca and K content with high 

significant level P-value < 0.001. LAI had a 

significant effect with P-value <0.5 for both 

two elements. Figure 3 depict the 

relationships between Ca and K concentration 

in corn dry matter and the most highly 

correlated vegetation indices. 

 
Table 4. Fitting model, R2, and P-value for the 

relationship between WorldView 2 VIs and calcium 

and potassium accumulation into the corn dry matter 

VIs 
WorldView 2 Image 

Corn plants dry matter Calcium content 
Fitting model R2 P - Value 

DVI Y = -0.8763X+ 2.4727 0.9013 < 0.001*** 

EVI Y = -0.7661X + 2.626 0.8019 < 0.001*** 

GNDVI Y= -1.9743X + 3.7517 0.8997 < 0.001*** 

LAI Y= -0.2144X+ 2.6046 0.783 0.406 * 

Corn plants dry matter potassium content 
DVI Y= -0.701X + 1.9782 0.9013 < 0.001*** 

EVI Y = -0.6129X+ 2.1008 0.8019 < 0.001*** 

GNDVI Y = -1.5794X + 3.0013 0.8997 < 0.001*** 

LAI Y = -0.1715X + 2.0837 0.783 0.1138* 

Source: calculations from worldview2 satellite image , 

July 2018 [18]. 

 

Using Sentinel 2 image as a moderate 
spatial resolution satellite imagery for corn 
plants Calcium content detection 
The regression analysis and fitting models of 

the relationship between corn plants dry 

matter Ca content and reported vegetation 

indices extracted from the Sentinel 2 image 

are shown in Table 5. The concentrations of 

the element had negative relationship with the 

majority of vegetation indices. DVI, EVI, 

GNDVI, and LAI performed well in 

estimating plant dry matter Ca content with R2 

values of 0.566, 0.5647, 0.3306, and 0.5647, 

respectively, with a high significant level P-

value 0.001. 

LAI had a statistically significant impact with 

a P-value of 0.5. The relationships between 

the concentrations of calcium and potassium 

in corn dry matter and the most closely 

associated vegetation indices are depicted in 

Fig. 4. 
 
 

(a) 

 
 
(b) 

 
 
(c) 

 
 
(d) 

 
Fig. 3. Relationship between above ground plant dry 

matter Ca and K content and vegetation indices 

calculated from WorldView 2 satellite image 

Source: calculations from worldview2 satellite image , 

July 2018 [18]. 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
Fig. 4. Relationship between above ground plant dry 

matter Ca and K content and vegetation indices 

calculated from Sentinel 2 satellite image 
Source: calculations from Sentinel 2 satellite image, 

July 2018 [12]. 

 

Using Sentinel 2 image as a moderate 
spatial resolution satellite imagery for corn 
plants Potassium content detection 
Table 5 shows the regression analysis and 

fitting models for the relationship between dry 

matter K content of corn plants and recorded 

vegetation indices extracted from the Sentinel 

2 image. The majority of vegetation indices 

showed a negative correlation with the 

element's concentrations. With R2 values of 

0.5343, 0.524, 0.4694, and 0.524 respectively, 

and a high significant level P-value < 0.001, 

DVI, EVI, GNDVI, and LAI performed well 

in estimating plant dry matter K material with 

a P-value < 0.01, LAI was statistically 

important. The associations between calcium 

and potassium concentrations in corn dry 

matter and the most closely related vegetation 

indices are shown in Fig. 4. 

 
Table 5. Fitting model, R2, and P-value for the 

relationship between Sentinel 2 VIs and calcium and 

potassium accumulation into the corn dry matter 

VIs 
Sentinel 2 Image 

Corn plants dry matter Calcium content 
Fitting model R2 P - Value 

DVI Y= -7.2697X+ 4.3503 0.566 < 0.001*** 

EVI Y= -3.8419X + 5.07 0.5647 < 0.001*** 

GNDVI Y = -4.8848X + 5.3443 0.3306 < 0.001*** 

LAI Y= -1.0619X + 4.9447 0.5647 0.28* 

Corn plants dry matter potassium content 
DVI Y = -2.3317X+ 2.3977 0.5343 < 0.001*** 

EVI Y = -1.2217X + 2.621 0.524 < 0.001*** 

GNDVI Y= -1.9214X + 2.935 0.4694 < 0.001*** 

LAI Y = -0.3377X + 2.5812 0.524 0.001** 

Source: calculations from worldview2 satellite image, 

July 2018 [18]. 

 

CONCLUSIONS 
 
This study compared the using of multi-

temporal Sentinel-2 images with the high 

resolution Worldview 2 image to detect Ca 

and K concentration on corn plants growing in 

a natural agriculture ecosystem irrigated with 

industrial waste water on the regional scale. 

(DVI), (EVI), (GNDVI), and (LAI) were 

selected as an effective indicator for Ca and K 

corn plants content based on data measured in 

the field and comparisons between ASD VIs , 

Sentinel-2 VIs, and WorldView 2 Vis, and 

these results also proved that the Sentinel-2 

images are an effective remote data source for 

detecting plant stress.  

The price volatility is reflected at all chin 

stages level and especially at the production 

stage and to a lesser degree at the marketing 

and processing levels.  
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