THE PROTEIN PRODUCTION POTENTIAL OF SOME MAIZE HYBRIDS

Alina Laura AGAPIE¹, Marinel Nicolae HORABLAGA^{1,2}, Busuioc VACARIU¹, Ovidiu EREMI^{1,2}, Florin SALA^{1,2}

¹Agricultural Research and Development Station Lovrin, Lovrin, 307250, Romania E-mails: alinamartinig@yahoo.com; hnm75@yahoo.com; busuioc.vacariu@scdalovrin; eremiovidiu@gmail.com; florin_sala@usvt.ro

Corresponding author: florin_sala@usvt.ro

Abstract

Maize hybrids, provided by Research and Development Agricultural Station-ARDS Suceava, were tested in comparative crop, under the specific conditions of the Western Plain of Romania. Field experiments were carried out in the ARDS Lovrin. Twenty maize hybrids were tested (SV_1 to SV_20, experimental codes). The protein content of the grains (Pro, %) was evaluated. The protein content varied between $Pro = 9.45\pm0.09\%$ (SV_13), and $Pro = 12.40\pm0.12\%$ (SV_17). Comparative analysis between hybrids (PHC), led to 190 combinations. There were 45 statistically significant positive differences; 13 differences with p<0.05 level (*), eight differences with p<0.01 level (***), and 24 differences with p<0.001 level (****). There were 19 negative differences with statistical certainty; two differences with p<0.05 level (o), three differences at the p<0.01 level (oo), and 14 differences at the p<0.001 level (ooo). In relation to the mean value ($Pro_m = 10.69\pm0.18\%$), some hybrids presented higher values (nine hybrids), and other hybrds presented lower values (11 hybrids). Significant increase in protein growth was recorded by hybrid $SV_1 (\Delta Pro = 1.71\%)$, followed by hybrid $SV_2 (\Delta Pro = 1.46\%)$. Maize hybrids with genetic advantage for protein production have been identified, for breeding programs and agricultural practice.

Key words: comparative analysis, maize genotypes, proteic crops, protein yield increase

INTRODUCTION

Quality sources for protein intake in human nutrition, it is necessary to ensure a balanced supply of various nutrients such as dietary fiber, mineral elements, and vitamins [17].

Balanced protein consumption in human nutrition, in relation to age categories and the specifics of socio-economic activities, is necessary for human health [7, 17, 24].

Food and dietary approaches for the human population aim to promote health in relation to the age structure and dynamics of the human population [14]. The authors have studied the importance regarding high-quality protein intake in some recommended dietary. Plant proteins are of high interest as sustainable protein sources for human nutrition [14]. The demand for food resources increased in the context of human population growth, and proteins are of great importance [1]. For a balanced human diet, protein is a vital macronutrient [4].

Associated to the need for proteins in human nutrition, and the different diets that were adopted, there have been an increasing demand for plant-based proteins [11]. Proteins from plant sources have gained increasing demand for human nutrition, and growth trends are predicted for the coming decades [13]. Plant proteins represent a good source of essential amino acids, mineral elements, and nutritional principles for human diets [13]. Proteins from plant sources are increasingly promoted for various nutritional, human health, and environmental reasons [4].

There has been an increasing demand for plant proteins worldwide, which are considered a "key component" of balanced diets [2]. Different categories of crop plants, such as legumes, oilseeds, cereals, have been considered as protein sources, and different methods for extracting proteins from plant sources have been studied [2].

Various crop plants are important sources of vegetable protein, particularly through the high

²University of Life Sciences "King Mihai I" from Timisoara, Timișoara, 300645, Romania Emails: hnm75@yahoo.com; eremiovidiu@gmail.com; florin_sala@usvt.ro

protein content in their seeds [6]. Through the presence of different species of protein plants in the structure of crop plants, they contribute to increasing biological diversity and increasing the sustainability of agricultural ecosystems [6]. Three categories of crop plants are in focus as main sources of protein, namely legumes, oilseeds, and cereals [4].

The plant-based protein industry is experiencing a growing trend, and protein crops present a series of economic and ecological benefits in agricultural ecosystems [19]. Attention is paid to improving genotypes of plants cultivated for protein production, with the aim of benefiting farmers by cultivating these categories of plants [19].

Maize is a crop of interest for protein, and different genetic systems in maize are being studied to obtain quality proteins [15]. Maize is multifunctional crop, with a major contribution to global agri-food systems [8]. In many countries, maize is a staple food for a significant part of the world's population [5]. Evaluating the influence of climatic conditions optimizing crop technologies management practices, associated with highperformance genotypes, are considered

necessary to increase yields and quality indices in maize crop [3, 5, 10, 21, 22].

This research evaluated the protein content of seeds in a group of maize hybrids (20 hybrids) originating from ARDS Suceava, and tested in comparative crops under pedo-climatic conditions characteristic of the Western Plain, located at ARDS Lovrin, Romania.

MATERIALS AND METHODS

Experimental protocols and collaborations between research stations provide for the comparative testing of crop plant genotypes created within a research station under specific conditions in another area of the country. In the present study, twenty maize hybrids, provided from ARDS Suceava, were cultivated and tested under specific climate and soil conditions within ARDS Lovrin. The genotypes were noted with SV_1 to SV_20 trials codes.

The research was conducted in the 2023-2024 agricultural year, under non-irrigated crop conditions. Climatic conditions are presented in Figure 1.

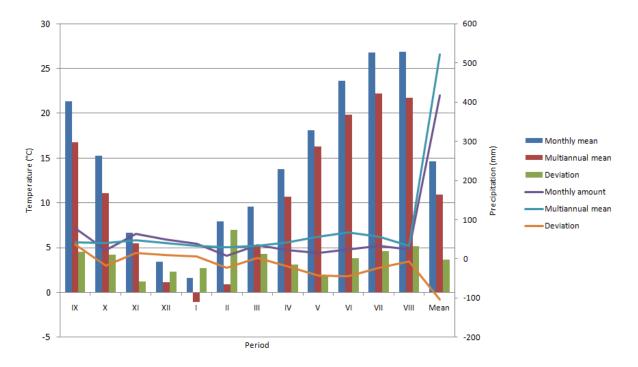


Fig. 1. Climatic conditions during the study period Source: Original data, ARDS Lovrin Weather Station.

The location of the experiment was on a plot

with chernozem soil, with medium fertility. A classic soil working system was used (plowing, disk, combine harrowing) for land preparation. Complex mineral fertilizers (15/15/15) were applied for soil fertilization, before sowing (250 kg ha⁻¹). Additionally, in vegetation, ammonium nitrate was applied (200 kg ha⁻¹). In the first decade of April, corn hybrids were sown. Repetitions were provided for each hybrid. Protection of corn crops from weeds was done by pre-emergence herbicides and by mechanical and manual work during the vegetation period.

The grain production was harvested at plant maturity [16], on each hybrid and replicates. Protein content (Pro, %) was determined based on sub-sampling from kernels production, for each genotype.

For the comparative analysis of corn hybrids, in terms of grain protein content, the calculation module in EXCEL, the PAST software [9] and JASP [12] were used.

RESULTS AND DISCUSSIONS

The tested maize hybrids benefited from uniform soil conditions (cambic chernozem) and climate, and expressed the genetic potential for protein content. Protein content values between Pro = $9.45\pm0.09\%$ (hybrid SV_13) and Pro = $12.40\pm0.12\%$ (hybrid SV_17) were recorded (Table 1).

Table 1. Protein content values of the tested corn hybrids

Maize hybrid	Protein (%)	Std. Error (SE)	Maize hybrid	Protein (%)	Std. Error (SE)		
SV_1	11.50	±0.35	SV_11	10.65	±0.09		
SV_2	10.30	±0.29	SV_12	10.30	±0.12		
SV_3	10.85	±0.32	SV_13	9.45	±0.09		
SV_4	10.45	±0.38	SV_14	11.25	±0.14		
SV_5	12.15	±0.03	SV_15	10.40	±0.12		
SV_6	10.70	±0.06	SV_16	9.55	±0.14		
SV_7	11.05	±0.09	SV_17	12.40	±0.12		
SV_8	11.15	±0.43	SV_18	11.30	±0.17		
SV_9	10.55	±0.03	SV_19	9.65	±0.09		
SV_10	10.15	±0.03	SV_20	10.05	±0.09		

Source: Original data.

The Anova test applied certified the presence of the variance, as well as the reliability of the experimental data (Table 2).

Table 2. Results of Anova Test

Cases	Sum of Squares	df	Mean Square	F	p		
Trial	35.554	19	1.871	15.841	< .001		
Residuals	4.725	40	0.118				

Source: Original data.

A comparative analysis of maize hybrids was performed, based on the protein content accumulated in the grains.

Each hybrid was analyzed against the other hybrids in the comparative crop (Post Hoc Comparisons - PHC), to find out how the hybrids position themselves among themselves, in relation to the protein content. 190 combinations of comparative analysis resulted. The results safety and the significance of differences are presented in Table 3.

For the reliability of the results, the thresholds p<0.05 (symbol * for positive differences; symbol o for negative differences), p<0.01 (symbol ** for positive differences; symbol oo for negative differences), respectively p<0.001 (symbol *** for positive differences; symbol ooo for negative differences) were considered. Positive differences were recorded, with statistical safety, for some comparative analyses; thirteen differences at the p<0.05 level (*), eight differences at the p<0.01 level (**), and 24 differences at the p<0.001 (***) level. Negative differences, in conditions of statistical safety, were recorded in the case of nineteen comparisons; in two situations with p<0.05 level (o), in three situations with p<0.01 level (oo), and in fourteen situations at p<0.001 level (000). Differences without statistical safety (ns) were also identified, for 126 comparative analyses. Of the total number of analyses, those that marked hybrids with high protein content, which showed genetic advantages for this quality index, were considered important, compared to the other hybrids.

Considering the results of the PHC analysis, in which the positioning of the hybrids was found based on protein content, with statistically significant differences among the 190 comparative analyses, it was also considered appropriate to analyze the hybrids in comparison with the average value at the experiment level.

Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development Vol. 25, Issue 2, 2025

PRINT ISSN 2284-7995, E-ISSN 2285-3952

Table	Table 3. Results of the comparative analysis between corn hybrids, in relation to protein content																		
	SV_2	SV_3	SV_4	SV_5	SV_6	SV_7	SV_8	SV_9	SV_10	SV_11	SV_12	SV_13	SV_14	SV_15	SV_16	SV_17	SV_18	SV_19	SV_20
CX7 1	0.014	0.713	0.056	0.713	0.362	0.983	0.999	0.129	0.003	0.266	0.014	< .001	1.000	0.036	< .001	0.188	1.000	< .001	0.001
SV_1	*	ns	ns	ns	ns	ns	ns	ns	**	ns	*	***	ns	*	***	ns	ns	***	**
SV_2		0.9	1.000	< .001	0.995	0.473	0.266	1.000	1.000	0.999	1.000	0.266	0.129	1.000	0.473	< .001	0.086	0.713	1.000
		ns	ns	000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	000	ns	ns	ns
SV_3			0.995	0.005	1.000	1.000	1.000	1.000	0.594	1.000	0.900	0.002	0.995	0.983	0.005	< .001	0.983	0.014	0.362
3 V_3			ns	00	ns	ns	ns	ns	ns	ns	ns	**	ns	ns	**	000	ns	*	ns
SV_4				< .001	1.000	0.818	0.594	1.000	1.000	1.000	1.000	0.086	0.362	1.000	0.188	< .001	0.266	0.362	0.995
3V_4				000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	000	ns	ns	ns
SV_5					0.001	0.036	0.086	< .001	< .001	< .001	< .001	< .001	0.188	< .001	< .001	1.000	0.266	< .001	< .001
31_3					**	*	ns	***	***	***	***	***	ns	***	***	ns	ns	***	***
SV_6						0.999	0.983	1.000	0.900	1.000	0.995	0.008	0.900	1.000	0.022	< .001	0.818	0.056	0.713
51_0						ns	ns	ns	ns	ns	ns	**	ns	ns	*	000	ns	ns	ns
SV_7							1.000	0.953	0.188	0.995	0.473	< .001	1.000	0.713	< .001	0.003	1.000	0.002	0.086
SV_/							ns	ns	ns	ns	ns	***	ns	ns	***	00	ns	**	ns
SV_8								0.818	0.086	0.953	0.266	< .001	1.000	0.473	< .001	0.008	1.000	< .001	0.036
31_0								ns	ns	ns	ns	***	ns	ns	***	00	ns	***	*
SV_9									0.995	1.000	1.000	0.036	0.594	1.000	0.086	< .001	0.473	0.188	0.953
31_9									ns	ns	ns	*	ns	ns	ns	000	ns	ns	ns
SV_10										0.953	1.000	0.594	0.036	1.000	0.818	< .001	0.022	0.953	1.000
3 V_10										ns	ns	ns	0	ns	ns	000	0	ns	ns
SV_11											0.999	0.014	0.818	1.000	0.036	< .001	0.713	0.086	0.818
3 V_11											ns	*	ns	ns	*	000	ns	ns	ns
SV_12												0.266	0.129	1.000	0.473	< .001	0.086	0.713	1.000
3 V_12												ns	ns	ns	ns	000	ns	ns	ns
SV_13													< .001	0.129	1.000	< .001	< .001	1.000	0.818
3 V_13													000	ns	ns	000	000	ns	ns
CV 14	0.266 < .001 0.022 1.000 < .001										< .001	0.014							
SV_14														ns	***	О	ns	***	*
SV_15															0.266	< .001	0.188	0.473	0.999
3 v_13															ns	000	ns	ns	ns
SV_16		-												-		< .001	< .001	1.000	0.953
2 v_10																000	000	ns	ns
SV_17		-												-			0.036	< .001	< .001
2 v_1/																	*	***	***
SV_18																		< .001	0.008
3 v_10																		***	**
SV_19		· <u> </u>												· <u> </u>			· <u> </u>		0.995
5 1 _ 19																			ns

Source: Original data.

The protein content mean value (\overline{Pro}), at the experimental level, was \overline{Pro} = 10.69 ± 0.18%. Compared to calculated mean value, nine hybrids provided positive differences, with an increase in protein content (ΔPro) ranging between ΔPro = 0.01% (SV_6) and ΔPro =

1.71% (SV_17). Eleven hybrids recorded a negative increase in protein content, with values ranging between $\Delta Pro = -0.04\%$ (SV_11) and $\Delta Pro = -1.24\%$ (SV_13). Hybrids SV_5 and SV_17 presented a positive increase, at a p<0.001 level. In the case of some hybrids,

the differences fell within the limits of the standard error, SE = $\pm 0.18\%$ (e.g. SV_3, SV_6, SV_9, SV_11) (Figure 2).

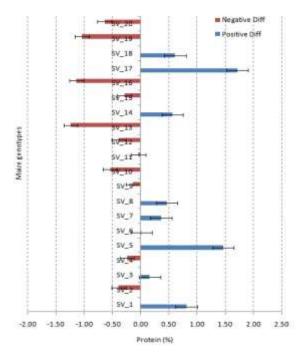


Fig. 2. Distribution of differences in protein content in corn hybrids, relative to the mean value of the experiment

Source: Original figure.

Based on the descriptive statistical analysis, quartile thresholds were generated and the corn hybrids were grouped by quartiles, in relation to the protein content in the grains (Figure 3). The upper quartiles included the hybrids SV 17, SV 5, SV 1, SV 18 and SV 14, with high protein content values. The lower quartile included the hybrids SV_10, SV_20, SV_19, SV_16, and SV_13, respectively, with protein content lower than the 10.99% threshold. The middle quartile included hybrids, 10 respectively SV_8, SV_7, SV_3, SV_6, SV_11, SV_9, SV_4, SV_15, SV_2, and SV_12.

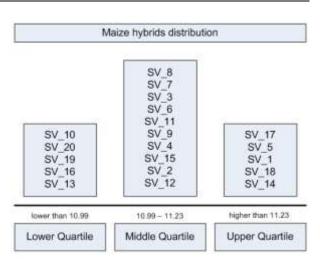


Fig. 3. Quartile distribution of maize hybrids, in relation to grain protein content

Source: Original figure.

A ranking of the maize hybrids was made based on the protein content of the kernels. The hierarchical diagram in Figure 4 resulted, with the distribution of the corn hybrids in the confidence interval in Figure 5, in the scattergram format.

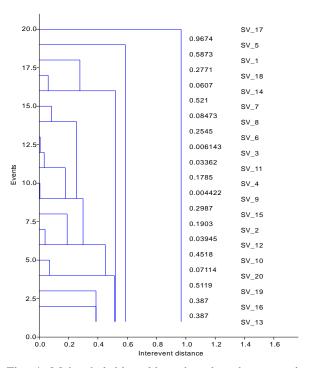


Fig. 4. Maize hybrid ranking chart based on protein content

Source: Original figure.

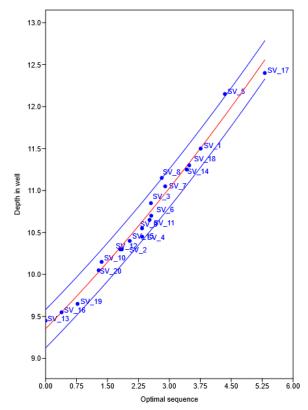


Fig. 5. Scattergrams of maize hybrids distribution Source: Original figure.

The protein content in protein crops and the quality of proteins, especially in essential amino acids (Lys, Trp in cereals; Met in legumes) has presented and continues to present interest from economic and humanitarian perspectives [23]. The authors presented the importance of methods based on genetic approaches, on biotechnologies, which, complemented with technological measures, lead to a high and quality protein content in protein crops [23].

Associated with population growth and demand for food resources, there has been a need to find technologies to ensure accessible proteins for human consumption, and the production of vegetable protein represents a possible solution [1].

Vegetable proteins are found in varying proportions in different diets, and protein sources are represented by a wide range of plant species [18].

Maize protein yield was analyzed in relation to various agrotechnical and climatic elements [20]. The authors recorded the variation of protein content significantly with climatic conditions during the growing season in a seven-year study. Significantly lower protein content was recorded in drought years and high temperatures [20].

Nitrogen fertilization before sowing, and localized fertilization with NP complexes in the plant row, significantly contributed to increasing the protein content in corn kernels [20].

In the context of the present study, the genetic potential for protein production in the 20 hybrids in comparative culture was analyzed. The hybrids in the upper quartile were analyzed and discussed both in terms of position within the quartile, as well as in relation to the other hybrids in the comparative crop.

The first position was occupied by the hybrid SV 17 with a protein content of Pro = 12.40±0.12%. Five hybrids were included in the upper quartiles (Figure 3). These five maize hybrids (SV_17, SV_5, SV_1, SV_18, and SV_14) showed genetic advantage for protein content, compared to the other hybrids tested. Within the upper quartile, the hybrid SV 17 presented differences at the p<0.05 level compared to the hybrids SV_14 and SV_18. Compared to the hybrids SV_1 and SV_5, the differences did not present statistical significance. In the case of the other hybrids grouped in the upper quartile, differences were observed, but without statistical significance. Across the entire collection of maize hybrids tested in comparative crop, maize hybrid SV 17 presented statistically significant differences, compared to the most of the hybrids tested, except for SV_1 and SV_5 hybrids. The SV_5 maize hybrid presented statistically significant differences, compared to 14 tested hybrids. The SV_1 maize hybrid registered statistically significant differences compared to eight tested hybrids. The SV_18 maize hybrid and the SV_14 maize hybrid presented statistically significant differences compared to six tested hybrids.

Ten hybrids were included in the middle quartile (Figure 2). Hybrid SV_8 (first position in the middle quartile) compared to the hybrids in the upper quartiles had a lower protein content, but with differences without statistical certainty (Table 3). Hybrid SV_7 (second position in the middle quartile) presented

20

differences at the p<0.05 level with hybrid SV 5, at the p<0.01 level with hybrid SV 17, and differences without statistical certainty with the other hybrids in the upper quartiles. Hybrid SV_3 (third position in the middle quartile) presented differences at p<0.01 levels compared to hybrid SV 5, at p<0.001 level compared to hybrid SV_17 and differences without statistical certainty compared to the other hybrids in the upper quartile. Hybrid SV_6 (fourth position in the middle quartile) showed differences at the p<0.01 level compared to hybrid SV_5, at the p<0.001 level compared to hybrid SV 17 and differences without statistical certainty compared to the other hybrids in the upper quartile. Hybrid SV 11 (fifth position in the middle quartile) showed differences at the p<0.001 level compared to hybrids SV_5 and SV_17, and differences without statistical certainty compared to the other hybrids in the upper quartile. These hybrids require attention in future studies, as they show differences in protein content, with statistical certainty, only compared to two hybrids in the upper quartiles, and differences without statistical certainty compared to three hybrids in the respective quartile. The other five hybrids in the middle quartile presented negative differences in protein content compared to three hybrids in the upper quartile, within statistical safety. Maize hybrids in the lower quartile recorded low protein content under the study conditions, but can be further evaluated for other morphological and physiological traits and agronomic characteristics.

CONCLUSIONS

By the protein content in the grains, the maize hybrids expressed differentiated protein production potential under uniform cultivation conditions, in terms of environmental and technological factors. Based on the protein content, five hybrids were positioned in the upper quartile, with values above the threshold of 11.23% protein, five hybrids were positioned in the lower quartile, with values lower than the threshold of 10.99% protein, and ten hybrids were positioned in the middle quartile. The highest protein content was

recorded for the SV_17 hybrid (Pro = $12.40\pm0.12\%$), followed by the SV_5 hybrid (Pro = $12.15\pm0.03\%$).

The comparative analysis led to 190 combinations, of which 45 comparative analyses with positive differences and 19 analyses with negative differences, in conditions of statistical safety.

Compared to the average value at the experiment level ($\overline{\text{Pro}} = 10.69 \pm 0.18\%$), the nine hybrids provided positive differences, with an increase in protein content (ΔPro) ranging between $\Delta \text{Pro} = 0.01\%$ (SV_6) and $\Delta \text{Pro} = 1.71\%$ (SV_17).

Maize hybrids in the upper quartile are of high interest for the corn breeding program, as a source of valuable genotypes, but at the same time they are also important for agricultural practice for the purpose of comparative testing in different pedoclimatic conditions and promotion for farmers.

ACKNOWLEDGEMENTS

The present data were generated following the implementation of the ADER 2.1.2 project.

REFERENCES

[1] Aimutis, W.R., 2022, Plant-based proteins: The good, bad, and ugly, Annual Review of Food Science and Technology, 13:1-17.

[2] Akyüz, A., Tekin, İ., Aksoy, Z., Ersus, S., 2024, Plant protein resources, novel extraction and precipitation methods: A review, Journal of Food Process Engineering, 47(10):e14758.

[3]Boiko, P., Kovalenko, N., Yurkevych, Y., Albul, S., Valentiuk, N., 2023, Maize production and trade and scientific technological solutions to mitigate climate change impact in Ukraine, Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 23(4):103-112.

[4]Chandran, A.S., Suri, S., Choudhary, P., 2023, Sustainable plant protein: an up-to-date overview of sources, extraction techniques and utilization, Sustainable Food Technology, 4(1):466-483.

[5]de Bruyn, M., Nel, A., van Niekerk, J., 2024, The nutritional benefits of maize-soybean rotational systems in the North-Western Free State, South Africa, Agriculture & Food Security, 13:20.

[6]De Ron, A.M., Sparvoli, F., Pueyo, J.J., Bazile, D., 2017, Editorial: Protein crops: Food and feed for the future, Frontiers in Plant Science, 8:105.

[7]Elmadfa, I., Meyer, A.L., 2017, Animal proteins as important contributors to a healthy human diet, animal

21

proteins as important contributors to a healthy human diet, Annual Review of Animal Biosciences, 5:111-131. [8]Erenstein, O., Jaleta, M., Sonder, K., Mottaleb K., Prasanna B.M., 2022, Global maize production, consumption and trade: trends and R&D implications, Food Security, 14:1295-1319.

[9]Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001, PAST: Paleontological Statistics software package for education and data analysis, Palaeontologia Electronica, 4(1):1-9.

[10]Haraga, L.-C., Szilagyi, L., Ion, V., 2022, Results regarding the effect of microgranulated fertilizers in hybrid seed maize production, Scientific Papers. Series A. Agronomy, LXV(2):216-221.

[11]Hertzler, S.R., Lieblein-Boff, J.C., Weiler, M., Allgeier, C., 2020, Plant proteins: Assessing their nutritional quality and effects on health and physical function, Nutrients, 12(12):3704.

[12]JASP Team, 2022, JASP (Version 0.16.2) [Computer software].

[13]Langyan, S., Yadava, P., Khan, F.N., Dar, Z.A., Singh, R., Kumar, A., 2022, Sustaining protein nutrition through plant-based foods, Frontiers in Nutrition, 8:772573.

[14]Lonnie, M., Hooker, E., Brunstrom, J.M., Corfe, B.M., Green, M.A., Watson, A.W., Williams, E.A., Stevenson, E.J., Penson, S., Johnstone, A.M., 2018, Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults, Nutrients, 10(3):360.

[15]Maqbool, M.A., Issa, A.B., Khokhar, E.S., 2021, Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption, Plant Breeding, 140(3):375-399.

[16]Meier, U., 2001, Growth stages of mono-and dicotyledonous plants e BBCH monograph, Federal Biological Research Centre for Agriculture and Forestry, 158 pp.

[17]Philips, S.M., Fulgoni, V.L.II., Heaney, R.P., Nicklas, T.A., Slavin, J.L., Weaver, C.M., 2015, Commonly consumed protein foods contribute to nutrient intake, diet quality, and nutrient adequacy, The American Journal of Clinical Nutrition, 101(6):1346S-1352S.

[18]Rolands, M.R., Hackl, L.S., Bochud, M., Lê, K.A., 2024, Protein adequacy, plant protein proportion, and main plant protein sources consumed across vegan, vegetarian, pescovegetarian, and semivegetarian diets: A systematic review, The Journal of Nutrition, Available online at: https://doi.org/10.1016/j.tjnut. 2024.07.033

[19]Singh, A.K., Elango, D., Raigne, J., Van der Laan, L., Rairdin, A., Soregaon, C., Singh, A., 2024, Plantbased protein crops and their improvement: Current status and future perspectives, Crop Science, https://doi.org/10.1002/csc2.21389

[20]Szulc, P., Ambroży-Deręgowska, K., Mejza, I., Kobus-Cisowska, J., Ligaj, M., 2020, The role of agrotechnical factors in shaping the protein yield of maize (*Zea mays* L.), Sustainability, 12(17):6833.

[21]Şimon, A., Ceclan, A., Haş, V., Varga, A., Russu, F., Cheţan, F., Bărdaş, M., 2023, Evaluation of the

impact of sowing season and weather conditions on maize yield, AgroLife Scientific Journal, 12(1):207-214. [22]Tashikalma, A.K., Giroh, D.Y., 2024, Productivity and efficiency of maize (*Zea mays*) farmers in Adamawa State, Nigeria, Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 24(1):979-990.

[23]Ufaz, S, Galili, G., 2008, Improving the content of essential amino acids in crop plants: goals and opportunities, Plant Physiology, 147(3):954-961.

[24]Wu, G., 2016, Dietary protein intake and human health, Food & Function, 7:1251-1265.