THE IMPACT OF AGRICULTURAL INPUTS ON CROP PRODUCTION EFFICIENCY ACROSS ROMANIAN DEVELOPMENT REGIONS: A MULTI-CROP ANALYSIS (2007-2023)

Ciprian-Dan MILITARU¹, Iancu TIBERIU², Marius Mihai MICU¹, Dragos Ion SMEDESCU¹, Alina Gabriela MĂRCUṬĂ¹, Valentina Constanta TUDOR¹

¹University of Agricultural Sciences and Veterinary Medicine Bucharest, 59 Marasti, District 1, 11464, Bucharest, Romania, E-mails: contact@ciprianmilitaru.ro, micu.marius@managusamv.ro, dragos.smedescu@managusamv.ro, marcuta.alina@managusamv.ro,

tudor.valentina@managusamv.ro

²University of Life Sciences "King Mihai I" of Timisoara, Arad Road no.119, 300645 Timisoara, Timis, Romania, E-mail: tiberiuiancu@usvt.ro

Corresponding author: tiberiuiancu@usvt.ro

Abstract

The paper aims to investigate the link between agricultural inputs and crop production in Romania's eight development regions over the period of 2007-2023 for the selected crops wheat, corn, barley and sunflower. The study uses data from the Romanian National Institute of Statistics to check how chemical fertilizers (nitrogen, phosphorus and potassium), mechanical equipment and other agricultural inputs influence crop production. Through correlation and regression analysis, strong and significant links between the use of chemical fertilizers and crop production with different levels of effectiveness in the regions and crops have been established. The result of the analysis revealed that phosphorus fertilizer had the highest correlation coefficient with wheat and barley production, while potassium had the highest correlation with sunflower production. It was also found that variation in the effectiveness of inputs was a crucial factor; the South-East and South-Muntenia regions were more effective in converting fertilizer inputs into output. The results show that wheat and barley are the most consistent in their response to fertilizer application (R² values are 0.21-0.29 and 0.24-0.25 respectively) while corn and sunflower have a relatively weaker response (R² values of 0.13-0.14 and 0.14-0.15, respectively). These results imply that fertilizer application should be done on a region and crop basis in order to enhance production in Romania

Key words: agricultural inputs, crop production, regional development, fertilizer efficiency, Romanian agriculture

INTRODUCTION

Agriculture represents the foundation of th eeconomical framework of Romania, by contributing to its national gross added value with approximately 3.9% in 2023 [29], much more above the average score UE27 of 1.3% [31]. **Taking** into consideration aproximately 45.7% of the Romanian population leaves in the countryside - in contrast with the EU27 avarage of 24% [32] – the importance of the field extends beyond the economical indicators including the social and teritorial development [17].

The regional agricultural development has been of main concern since Romania's entry in EU, especially regarding the process of turning into practice of the collective agricultural policy [1]. The regional variations concerning

the agricultural productivity and the use of resources have become essential factors in understanding the agricultural development of Romania [4]. The differences regarding the use of farms inputs among regions especially fertilizers and pesticides [21, 22] led to variations of yields besides the influence of climate change. Each of the eight development regions in Romania presents distinctive agricultural features modeled by geographical, climatic factors and the Ministry of Agriculture and Rural Development [15] has established frames for aproaching regional agricultural challenges promoting at the same time a durable growth. Analyzing the data from the National Institute of Statistic from 2007-2023 the current research examines the connections between the agricultural inputs and the productivity in the regions in order to offer recommendations based on evidence for optimizing the agricultural production at a regional level.

One of this important aspects of agriculture is the one referring to fertilization, which represents a fundametal pillar of modern agricultural production being essential to maintaining the fertility of the soil and maximizing the crops productivity [18]. In the last decades the fertility paradigma has been through a major transformation going through a significant transformation from the generalized application of chemical fertilizers to a sustainable, integrated approach based on data known as precise nutritional management [8, 12, 19].

The correct fertilizing ensures not only the macro and micro necessary nutrients in the physiological processes of plants, such as photosynthesis breathing or protein synthesis but also the balance between productivity and the impact of the environment. Recent studies emphasises that the traditional fertilizers NPK, although efficient, can lead to substantial losses leeching and gas emissions leading to the waters contamination and the lowering of soil quality if they are not properly managed [9].

A notable change in this field is the adoption of precision fertilization, which entails the local and synchronized appliance of nutrients according to the pants necessities, to the vegetation phase and the characteristics of the soil [16, 23, 25].

Moreover, the specific management of nutrients at plot level proved itself efficient in raising the production yield, the reducing of the greenhouse gasses emissions and the raising of farmers incomes [10, 24, 26].

This technological transformation reflects current trends in European agriculture, which is increasingly aligned with sustainability and efficiency goals [3]. By using modern technologies – sensors, satellite imagery and soil analysis – Romanian farmers are starting to adopt a data-driven farming model, where decisions are scientifically based. This step is essential to increase the competitiveness of the agricultural sector in the context of the European single market.

National and European agricultural policies also encourage the transition to sustainable practices through financial allocations and direct incentives, which contributes to the widespread adoption of modern methods of fertilization and soil management [2]. In this sense, the role of agriculture is no longer limited to food production, but extends to essential ecological and social functions [13, 20]. In combination with practices of conservative agriculture such as direct seeding and the keeping of the vegetal waste fertilization becomes not only an agricultural technique but an instrument to protect the environment and to fight climatic changes [14]. Modern fertilization is no longer regarded as a simple appliance of nutritive substances but as a complex process integrated part of the intelligent agriculture which contributes to the global food safety conserving the natural resources and to the agroecosystems towards the climatic stress. Thus, the integrated strategies of fertilizing based on combination of organic and mineral fertilizers, the rotation of crops and the continuous analysis of the soil are fundamental for a durable agriculture in the long term [7]. Another important aspect is the economical Therefore. the technological modernization of fertility is not only an answer to the environmental changes but also a strategic economical process which offers opportunities for the development of new products and the raise of competitiveness in the global agricultural industry [11].

The importance of studying the efficiency of fertilizers in the Romanian agriculture is emphasised by the country's position as a major producer of corn in the EU, having approximately 2.6 million cultivated hectares in 2015 (Tudor et al., 2017) [27]. Despite this and although Romania has the biggest cultivated area, the yields are significantly behind other EU countries, emphasizing the critical necessity to optimize the use of inputs. Recent research has shown that the use of nitrogen fertilizers has a significant impact on the wheat production in Romania, the studies having shown that 78.76% from the variation of the production can be due to the levels of applying the nitrogen fertilizers [28].

The same study has shown that fertilizer consumption rates in Romania are significantly lower than in other countries in EU, having an average of only 38.65 kg N/ha, in contrast with higher rates in countries such as Poland (96.24 kg N/ha) and France (110,80 kg N/ha), emphasizing the potential to optimize the efficiency of using fertilizers.

In this context, the purpose of the paper is to investigate the link between agricultural inputs and crop production in the eight development regions of Romania, during the period 2007–2023, for wheat, corn, barley and sunflower crops.

MATERIALS AND METHODS

This research uses quantitive data from the National Institute of Statistics (NIS) of Romania for the years 2007, 2014, 2019, 2020, 2021, 2022 si 2023.

The set of data comprizes four major essential crops from the agricultural production in Romania: wheat, corn, barley and sunflower. For every crop we have collected data regarding the production volumes, the cultivated areas and the agricultural inputs from eight development regions of Romania, established by the law no. 315/2004 North-West, Center, North-East, South-East, South-Muntenia, Bucuresti-Ilfov, South-West Oltenia and West [4].

The study analyzes three different categories of agricultural inputs: chemical fertilizers (nitrogen, phosphorus and potassium), mechanical equipment (tractors, combines and seeders) and other factors of production including natural fertilizers and pesticides. We use the analysis of the correlations to examine the relation between these inputs and the vegetal production with levels of significance established at p<0.01 and p<0.05 because this statistic approach allows us to quantify the power and the direction of the relations between the agricultural inputs and the results of the productivity.

The statistic analysis was done using IBM SPSS Statistics Version 25.0, while the organizing of the data and preliminary calculations were done using Microsoft Excel 2019.

This methodological approach is in agreement with the recent studies concerning the agricultural regional efficiency in Romania. As Chivu et al. (2020) [6] shows, the analysis of the agricultural productivity using the function Cobb-Douglas in classical form.

For the entries that present significant correlations we do regression analysis using the model:

 $MP = \beta_0 + \beta_1 F + \varepsilon$

- MP represents the average productions
- β_0 is the constant term
- β_1 is the regression coeficient
- F represents the intake of fertilizers
- ε is the error term

The validity of the model is evaluated through the values R square, F statistics, Durbin-Watson statistics and the beta standardized coefficients.

This methodological frame is in agreement with current standards in the agricultural economical research [11] integrating at the same time the regional specificities of the Romanian agriculture.

The methodology followed the approach of systematic revision described by Dumitru et al. (2023) [9], where the data were collected through extensive searches in the databases, focusing on the publications revised by colleagues referring to the vegetable production and the impact of climatic changes. The systematic revision was combined with the bibliometric analysis to identify the main tendencies and models of research in the field.

RESULTS AND DISCUSSIONS

The regional distribution of the agricultural production

The analysis of the agricultural productions in the development regions of Romania shows distinctive models regarding the crops distribution and the varieties of the yield.

During the evaluated period of time (2007-2023), there have been significant differences between regions in volume as well as in the efficiency of the agricultural production.

Table 1. The regional distribution of the agricultural production (the average on the selected years 2007-2023)

Region	Wheat (kg/ha	Corn (kg/ha	Barley (kg/ha	Sunflowe r (kg/ha)
)))	- (
North-	3,746	4,869	3,530	2,084
West				
Centre	3,862	5,337	3,763	2,379
North-	3,319	4,001	3,212	1,812
East				
South-	3,291	3,652	3,549	1,815
East				
South-	3,820	4,221	3,958	2,010
Muntenia				
Bucharest	3,850	3,941	3,808	1,848
-Ilfov				
South-	3,556	3,882	3,653	2,021
West				
Oltenia				
West	4.502	4.981	4.278	2,405

Source: Processed data NIS [30]

Table 1 presents the distribution of the agricultural production in the eight development regions of Romania for the main evaluated crops (wheat, corn, barley and sunflower). The data indicates substantial regional variations regarding the volume of the production reflecting the differences regarding the cultivated areas, the agricultural practices and the use of resources.

South-Muntenia and South-East regions have constantly shown bigger volumes of production for all the crops that have been studied, especially for the wheat and corn crops.

This model is probably due to more factors, including favorable climatic conditions, larger agricultural areas and to the agricultural practices historically established in these regions.

On the other hand, Bucurest-Ilfov and Centre regions have recorded lower production volumes, mainly because of smaller agricultural areas and because of their more urban features.

Still, these regions have often shown a bigger efficiency in what the hectare yield is concerned, especially when it comes to crops such as wheat and corn.

The temporal analysis from 2007 until 2023 shows a general tendency of growth in the efficiency of production in all the regions,

although there have been significant variations from one year to the other.

These variations reflect the impact of change in the meteorologic patterns of the rates concerning the adoption of technologies and of the evolution of agricultural practices in each of the regions.

The analysis of the wheat production

The analysis of the wheat production in connection with the agricultural inputs emphasized significant correlations with more key factors especially with chemical fertilizers. Table 2 shows coefficients of correlation between different agricultural inputs and the wheat production.

Chemical fertilizers showed the strongest associations with the results of the wheat production.

Phosphorus fertilizers showed the biggest correlation (r=0.541, p<0.01), followed by nitrogen (r=0.523, p<0.01) and potassium (r=0.456, p<0.01).

However, the mechanical equipment and other intakes presented weaker correlations, insignificant to the levels of production.

The regression analysis of the three significant relations concerning the fertilizers have shown distinctive models.

Table 2. The analysis of the correlation: the production of wheat and the agricultural intakes

Input Variable	Pearson	Significance
	Correlation	Level
Nitrogen	0.523	**
fertilizer		
Phosphorus	0.541	**
fertilizer		
Potassium	0.456	**
fertilizer		
Tractors	0.239	ns
Agricultural	0.150	ns
combines		
Mechanical	0.115	ns
seeders		
Natural	0.052	ns
fertilizers		
Fungicide	0.194	ns
Herbicide	-0.079	ns

Source: personal processing of NIS data [30]. Note: ** significant for p<0.01; ns= insignificant

The model of the fertilizer based on phosphorus gave a regression coefficient of 56.545 (p<0.01) with a standard error of

11.253, explaining 29.2% of the variation of the production (R^2 = 0.292) and showing an adequate independence of the waste (Durbin-Watson=2.320). The analysis of the nitrogen fertilizers showed a regression coefficient of 43.210 (p<0.01) with a standard error of 10.792, explaining 20.8% of the variant (R^2 = 0.208) and maintaining an adequate waste independence (Durbin-Watson = 2.384).

These findings point to the fact that, although all the three studied fertilizers significantly influence the wheat production, the phosphorus fertilizers prove to have the strongest effect, explaining approximately 29.2% of the production variation.

The positive coefficients for all the three studied fertilizers suggest that high usage rates are associated with higher production values, although the yield drops at higher usage rates.

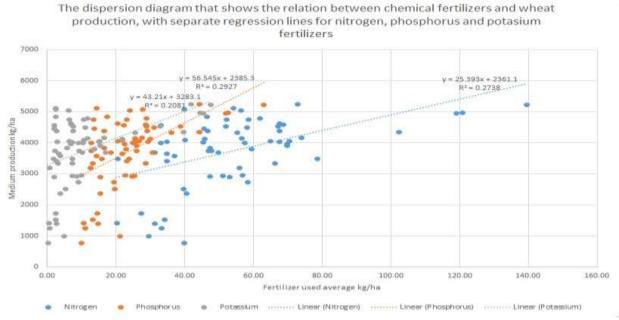


Fig. 1. The dispersion diagram that shows the relation between chemical fertilizers and wheat production, with separate regression lines for nitrogen, phosphorus and potasium fertilizers Source: personal processing of NSI data [30].

The dispersion diagram that shows the relation between chemical fertilizers and corn

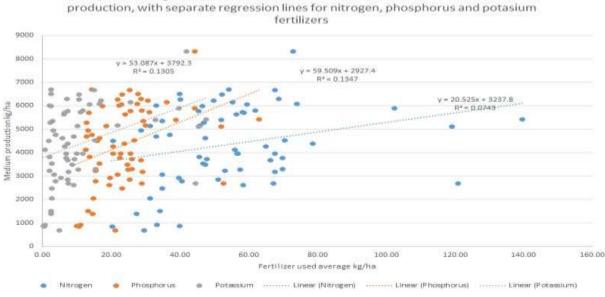


Fig. 2. The dispersion diagram that shows the relation between chemical fertilizers and corn production, with separate regression lines for nitrogen, phosphorus and potasium fertilizers Source: personal processing of NSI data [30].

The dispersion diagram that shows the relation between chemical fertilizers and barley production, with separate regression lines for nitrogen, phosphorus and potasium fertilizers

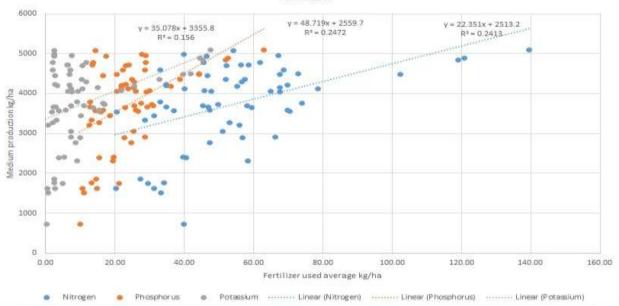


Fig. 3. The dispersion diagram that shows the relation between chemical fertilizers and barley production, with separate regression lines for nitrogen, phosphorus and potasium fertilizers Source: personal processing of NSI data [30].

The dispersion diagram that shows the relation between chemical fertilizers and sunflower production, with separate regression lines for nitrogen, phosphorus and potasium fertilizers

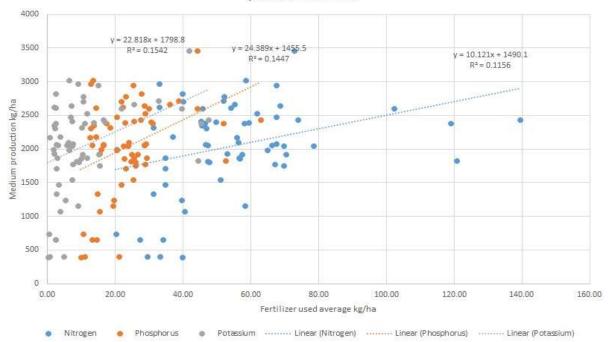


Fig. 4. The dispersion diagram that shows the relation between chemical fertilizers and sunflower production, with separate regression lines for nitrogen, phosphorus and potasium fertilizers Source: personal processing of NSI data [30].

The analysis of corn production

The analysis of corn production emphasized different models regarding the intake

efficiency in contrast with the wheat production.

Table 3. The analysis of the correlation: Wheat production and agricultural inputs

Input Variable	Pearson	Significance
	Correlation	Level
Phosphorus	0.367	**
fertilizer		
Potassium	0.361	**
fertilizer		
Tractors	0.322	*
Nitrogen	0.273	*
fertilizer		
Natural	0.260	*
fertilizers		
Agricultural	0.258	*
combines		
Mechanical	0.217	ns
seeders		
Fungicide	0.166	ns
Herbicide	0.076	ns

Source: personal processing of NSI data [30].

Note: ** significant for p<0.01; * significant for p < 0.05; ns= insignificant.

The analysis of the correlations identified significant relations with both chemical fertilizers, as well as with mechanical equipment, as shown in Table 3.

Unlike the wheat production corn has presented moderate correlations with the mechanical equipment, especially tractors (r = 0.322, p < 0.05). Of all the chemical fertilizers, phosphorus and potassium have shown the strongest correlations (r = 0.367 and r = 0.361, p < 0.01).

The regression analysis for the most significant inputs emphasized complementary models between different types of fertilizers. The phosphorus fertilizer model had a regression coefficient of 59.509 (p<0.003) with a standard error of 1,597.274, explaining 13.5% of the production variation (R²=0.135) and proving an acceptable independence of the Durbin-Watson=1.902. For the potassium fertilizer, the analysis revealed a regression coefficient of 53.087 (p<0.004) with a standard error of 1,691.138, being responsible for 13% of the variation (R²= 0.130), proving an adequate independence of the residual value (Durbin-Watson = 1,936).

The regression models explain between 13% and 13.5% of the variation of the corn production, although the influence of the fertilizers applied is significant we can conclude that factors like soil quality and

meteorological conditions play a more important role in determining the corn production yield in comparison with the wheat production.

The analysis of barley production

The analysis of the barley production emphasized strong correlations with the chemical fertilizers, having different models in comparison to wheat and corn. Table 4 shows the results of the correlation analysis for different agricultural inputs. Barley showed to have the strongest response to phosphorus fertilizers (r=0.497, p<0.01) and to nitrogen fertilizers (r=0.491, p<0.01), with correlation coefficients that were larger than the ones for the corn production.

The influence of the potassium fertilizer, although significant (r=0.395, p<0.01) was lower in comparison to the other two studied fertilizers.

Table 4. The analysis of the correlation: Barley

production and agricultural inputs

Input Variable	Pearson	Significance
	Correlation	Level
Phosphorus	0.497	**
fertilizer		
Nitrogen	0.491	**
fertilizer		
Potassium	0.395	**
fertilizer		
Agricultural	0.061	ns
combines		
Mechanical	0.042	ns
cultivators		
Natural	0.001	ns
fertilizers		
Fungicide	0.139	ns
Herbicide	-0.188	ns

Source personal processing of NSI data [30].

Note: ** significant for p<0.01; * significant for p <

0.05; ns= insignificant.

From regression analysis of the significant relations between fertilizers produced distinctive models, one for each type of fertilizer. The phosphorus model had a regression coefficient of 48.719 (p<0.001) and explained almost a quarter (24.7%) of the variation of the production ($R^2 = 0.247$) with an adequate independence of the rezidual value (Durbin-Watson = 2.161) and a standard error of 900.273. This statistical relations are visually represented in image 3, that shows the

graphical representation of the barley yield response to different fertilizers in different regions of Romania.

The regression models for barley explain approximately 24-25% of the variation of the production, having a stronger predictive relation in comparison with corn. The mechanical inputs showed a small correlation with the barley production, this find suggesting that managing fertilizers can be more useful for optimizing the yield of the barley crops than mechanical inputs.

The analysis of the sunflower production

The analysis of the production of sunflower created different models, with significant variations regarding inputs efficiency in comparison to other studied crops.

Table 5 shows the correlation coefficients between the

griculture inputs and the sunflower crop production			
Input Variable	Pearson	Significance	
	Correlation	Level	
Potassium	0.393	**	
fertilizer			
Phosphorus	0.380	**	
fertilizer			
Nitrogen	0.340	**	
fertilizer			
Agricultural	0.241	ns	
combines			
Mechanical	0.221	ns	
seeders			
Natural	0.205	ns	
fertilizers			
Fungicide	-0.171	ns	
Herbicide	0.041	ns	

Source personal processing of NSI data [30].

Note: ** significant for p<0.01; ns= insignificant.

In comparison with other crops in the present study, the sunflower crops proved to have the strongest response to the potassium fertilizers (r=0.393, p<0.01), followed by phosphorus (r=0.380, p<0.01) and nitrogen (r=0.340,p<0.01). The findings are in accordance with the known high potassium need of the sunflower plant for oil production.

The potassium fertilizer model had a regression coefficient of 22.818 (p<0.01) and accounted for 15.4% of the variation of the production ($R^2 = 0.154$), with an adequate independence of the residual value (Durbin-Watson = 1.870) and a standard error of 6.842. For the phosphorus fertilizer the model has

shown a regression coefficient of 24.389 (p<0.01) and explained 14.5% of the variance $(R^2 = 0.145)$, showing an acceptable independence of the residue (Durbin-Watson = 1.764) and a standard error of 7.592.

The regression models explain approximately 14-15% of the variation of the sunflower production, which suggests that while the chemical fertilizers play a significant part, other factors, such as the soil condition and the climate, can have a substantial impact on the production yield. The mechanical entries have presented weaker correlations in contrast with other crops, which suggests the fact that the management of the fertilizers could be more important for the optimization of the sunflower production than the mechanical intervention.

Comparative analysis

The analysis of the inputs-outputs relations for all the four crops show distinctive models regarding the efficiency of the fertilizers and the regional success.

The chemical fertilizers have constantly shown significant correlations with the production of all crops, although with different degrees of impact (Table 6).

Table 6. The comparative analysis of the impact of

fertilizers on crops

Fertilizer	Wheat	Corn	Barley	Sunflower
P	0.541**	0.367**	0.497**	0.380**
N	0.523**	0.273*	0.491**	0.340**
K	0.456**	0.361**	0.395**	0.393**
R² range	0.21-	0.13-	0.24-	0.14-0.15
	0.29	0.14	0.25	

Source: personal processing of NSI data [30]. Note: ** significant for p<0.01; ns= insignificant.

The phosphorus fertilizers have shown the strongest correlation with wheat (r=0.541) and barley (r=0.497), while the production of sunflower has shown the biggest correlation with the potassium fertilizer (r=0.393). Corn has shown more moderate correlations among all the types of fertilizers, phosphorus showing the strongest relation (r=0.367).

New successful regional models have appeared for all the studied crops, revealing distinctive tendencies regarding both the inputs efficiency and the regional performance. In what the variance of the inputs efficiency is concerned, the wheat and the barley have shown the strongest response to the inputs of fertilizers, with R² values of 0.29 and respectively 0.25, while the corn and the sunflower have presented more moderate responses, suggesting higher influence of a environmental factors. Particularly, mechanical inputs have presented a significant correlation only with the corn production. As for the regional models of performance, the efficiency of the chemical fertilizers varied significantly according to the region, the strongest responses being noticed in the Southeast region and South-Muntenia. The impact of the mechanical inputs has presented less regional variations in contrast with the chemical fertilizers, while the efficiency of the natural fertilizers remained low in all the regions and crops.

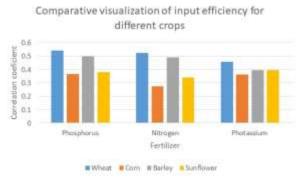


Fig. 5. The comparative visualization of the inputs efficiency amongst crops Source personal processing of NSI data [30].

The regional distribution of the agricultural production reflects the patterns noticed by Bălan (2014) [3] in his territorial analysis. Despite the territorial distribution, which is relatively balanced, between regions (ranging from 12.25% to 15.46% of the national territory) with the exception of Bucuresti-Ilfov region, the agricultural production varies significantly. This variation is obvious especially in South-Muntenia region and South-East, where a combination of favorable soil conditions adequate climate and extended agricultural areas contribute to higher volumes of production of the main crops.

South-Muntenia and Sount-East regions have constantly shown higher volumes of productions [16].

The persistent regional disparities in the Romanian agricultural field by comparison to the EU model reflects significant structural challenges. As Ciutacu et al. (2015) [5] shows their comprehensive analysis, Romania was owning 7.7% of the utilized agricultural area of the EU, it hired 25% of the agricultural working force of the EU in 2010. Their research shows that Romanian farmers received a much smaller support only 158.3 EUR/ha, in comparison to the EU average of 274 EUR/ha, and the total support represented just 33.6% of the sectors gross added value, in contrast to 47.8% the EU average. These structural disadvantages contribute to the explanation of the variation in the regional agricultural productivity and emphasizes the of balanced necessity more support mechanisms.

This comparative analysis suggests that, although chemical fertilizers are essential for all the crops, their optimal use has to be adjusted to specific crops and to regional conditions. The variation of the R² values amongst crops indicate different levels of predictability of the results of the production founded on the levels of the inputs, the wheat and the barley showing the most consistent answer to applying fertilizers.

CONCLUSIONS

The analysis of the agricultural inputs and their relation to the vegetal production in the developing regions of Romania has underlined some significant models which have important applications for the management of the agriculture and policy making.

Chemical fertilizers have constantly shown significant correlations with the production f all the studied crops, although with different degrees of impact. Phosphorus fertilizers have shown strong relations with the wheat production (r=0.541) and barley (r=0.497), while potassium fertilizers have shown the strongest correlation with the production of sunflower (r=0.393). These relations suggest that the specific strategies to apply the fertilizers could significantly improve the results of the production. The regional variation in what the efficiency of the inputs is

505

concerned have appeared as an important factor in the agricultural productivity. The South-East and South-Muntenia regions have generally shown a stronger efficiency for converting the fertilizers input into vegetal productions, especially for the wheat and corn production. This regional variation suggests the necessity of agricultural management strategies adjusted to the local level rather than an unique approach.

The analysis has shown that different crops show different levels of response to the agricultural inputs. The wheat and the barley showed the most consistent and strongest responses to the fertilizers use (R2 values of 0.21 -0.29 and respectively 0.24-0.25), while the corn and the sunflower have shown more moderate answers (R2 values of 0.13-0.14 and 0.14 - 0.15). This respectively variation suggests that the strategies to manage the specific inputs of the crops could optimize the use of resources and improve the efficiency of the production.

These findings have more important implications for the agricultural policy and practice in Romania. The development of guidelines regarding the use of specific fertilizers to each region could improve the efficiency of inputs in different areas. The investment in testing and monitorization of the soil could contribute to the optimization of the usage rate of the fertilizers according to the local conditions. The implementation of the management strategies specific to each crop could improve the results of the production by adjusting the approaches the to the unique needs of each crop. In addition, the continuing the researches regarding other factors that affect the crops yield could offer additional information to optimize agriculture, leading to more comprehensive and efficient agricultural practices.

The results of the study offer support for making decisions based on evidence in the Romanian agriculture, particularly in what the allocation of resources and the strategies of input management is concerned. Still, monitoring and continuously analyzing the input-output relations will be essential to adjusting to the changing agricultural

conditions and to the maintaining of a long term improvement of the productivity.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude towards Mrs. Professor Tudor Valentina Constanța Phd for her guidance and valuable support during this research, as well as towards the Doctoral School "Engineering and Management of Plant and Animal Resources" for providing the necessary resources and the academic environment for performing this research.

REFERENCES

[1]Alexandri, C., Luca, L., 2012, The Role of Small Farms in Romania and Their Future in the Face of Challenges of the CAP Post 2013. Problems of Small Agricultural Holdings, 1, 13-30.

[2]Alexoaei, A. P., Robu, R. G., Cojanu, V., Miron, D., Holobiuc, A. M., 2022, Good practices in reforming the common agricultural policy to support the European Green Deal—a perspective on the consumption of pesticides and fertilizers, Amfiteatru Economic, 24(60), 525-545.

[3]Boix-Fayos, C., de Vente, J., 2023, Challenges and potential pathways towards sustainable agriculture within the European Green Deal, Agricultural Systems, 207, 103634.

[4]Burja, C., Burja, V., 2013, Sustainable Development of Rural Areas: A Challenge for Romania. Environmental Engineering and Management Journal, 12(8), 1535-1539

[5]Ciutacu, C., Chivu, L., Andrei, J.V., 2014, Similarities and dissimilarities between the EU agricultural and rural development model and Romanian agriculture. Challenges and perspectives. Bulgarian Journal of Agricultural Science, 20 (4), 738-745.

[6]Chivu, L., Andrei, J.V., Zaharia, M., Gogonea, R.M., 2020, A regional agricultural efficiency convergence assessment in Romania – Appraising differences and understanding potentials. Land Use Policy, 99, 104838 [7]D'Amato, R., De Feudis, M., Troni, E., Gualtieri, S., Soldati, R., Famiani, F., Businelli, D., 2022, Agronomic potential of two different glass-based materials as novel inorganic slow-release iron fertilizers, Journal of the Science of Food and Agriculture, 102(4), 1660-1664.

[8]Dobermann, A., Bruulsema, T., Cakmak, I., Gerard, B., Majumdar, K., McLaughlin, M., ... Zhang, X., 2022, Responsible plant nutrition: A new paradigm to support food system transformation, Global Food Security, *33*, 100636.

[9]Dumitru, E.A., Berevoianu, R.L., Tudor, V.C., Teodorescu, F.-R., Stoica, D., Giucă, A., Ilie, D., Sterie, C.M., 2023, Climate Change Impacts on Vegetable

- Crops: A Systematic Review. Agriculture 2023, 13, 1891
- [10]Dungait, J. A., Cardenas, L. M., Blackwell, M. S., Wu, L., Withers, P. J., Chadwick, D. R., ... Goulding, K. W., 2012, Advances in the understanding of nutrient dynamics and management in UK agriculture, Science of the Total Environment, 434, 39-50.
- [11]Guelfi, D., Nunes, A. P. P., Sarkis, L. F., Oliveira, D. P., 2022, Innovative phosphate fertilizer technologies to improve phosphorus use efficiency in agriculture, Sustainability, 14(21), 14266.
- [12]Kuldeep, Singh, A. K., Sajwan, A., Kamboj, A. D., Joshi, G., Gautam, R., ... & Kaur, J., 2024, Advances in precision nutrient management of fruit crops, Journal of Plant Nutrition, 47(19), 3251-3271.
- [13]Meerburg, B. G., Korevaar, H., Haubenhofer, D. K., Blom-Zandstra, M., Van Keulen, H., 2009, The changing role of agriculture in Dutch society, The Journal of Agricultural Science, 147(5), 511-521.
- [14]Micu, M. M., Dinu, T. A., Fintineru, G., Tudor, V. C., Stoian, E., Dumitru, E. A., ... & Iorga, A., 2022, Climate change—between "myth and truth" in Romanian Farmers' perception. Sustainability, 14(14), 8689.
- [15]Ministry of Agriculture and Rural Development, 2014, National Rural Development Programme for the 2014-2020 period, Romania.
- [16]Munir, A., Salah, M. A., Ali, M., Ali, B., Saleem, M. H., Samarasinghe, K. G. B. A., ... Anas, M., 2024, Advancing Agriculture: Harnessing Smart Nanoparticles for Precision Fertilization, BioNanoScience, 14(4), 3846-3863.
- [17]Muntean, M.C., Nistor, C., Nistor, R., 2010, Competitiveness of Developing Regions in Romania. WSEAS Transactions on Business and Economics, 7(3), 252-261.
- [18]Mustafa, G., Hayat, N., Alotaibi, B. A., 2023, How and why to prevent over fertilization to get sustainable crop production, Sustainable Plant Nutrition (pp. 339-354), Academic Press.
- [19]Patel, K. K., Chaudhari, N. M., Gamit, M., Chaudhari, S., 2023, Site Specific Nutrient Management in Precision Agriculture, Agriculture and Food, 44090, 262-264.
- [20]Pawlak, K., Kołodziejczak, M., 2020, The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production, Sustainability, *12*(13), 5488.
- [21]Popescu, A., Dinu, T.A., Stoian, E., Serban, V. 2021, The use of chemical fertilizers in Romania's agriculture. Scientific Papers. Series "Management, Economic Engineering in Agriculture and rural development", Vol. 21(4), 469-476.
- [22]Popescu, A., Tindeche, C., Marcuta, A., Marcuta, L., Hontus, A., 2021, Pesticides-A problem in Romania's agriculture? Scientific Papers. Series "Management, Economic Engineering in Agriculture and rural development 2021(4), 477–486.

- [23]Radočaj, D., Jurišić, M., Gašparović, M., 2022), The role of remote sensing data and methods in a modern approach to fertilization in precision agriculture, Remote Sensing, 14(3), 778.
- [24]Sapkota, T. B., Jat, M. L., Rana, D. S., Khatri-Chhetri, A., Jat, H. S., Bijarniya, D., ... Majumdar, K., 2021, Crop nutrient management using Nutrient Expert improves yield, increases farmers' income and reduces greenhouse gas emissions, Scientific reports, 11(1), 1564.
- [25]Soares, J. A., et al., 2025, Design and performance of a multicomponent glass fertilizer for nutrient delivery in precision agriculture, Journal of Environmental Chemical Engineering, 13(2), 110872.
- [26]Timsina, J., Dutta, S., Devkota, K. P., Chakraborty, S., Neupane, R. K., Bista, S., ... Majumdar, K., 2022, Assessment of nutrient management in major cereals: Yield prediction, energy-use efficiency and greenhouse gas emission, Current Research in Environmental Sustainability, 4, 100147.
- [27]Tudor, V., Popa, D., Gimbăşanu, G. F., 2017, The Analysis of the Cultivated Areas, the Production and the Selling Price for Maize Crops During the Pre-and Post-accession Periods of Romania to the European Union and Trends of Evolution of These Indicators. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 17(2), 387-394.
- [28]Tudor, V.C., Stoicea, P., Chiurciu, I.-A., Soare, E., Iorga, A.M., Dinu, T.A., David, L., Micu, M.M., Smedescu, D.I., Dumitru, E.A, 2023, The Use of Fertilizers and Pesticides in Wheat Production in the Main European Countries. Sustainability, 15, 3038. https://doi.org/10.3390/su15043038
- [29]National Institute of Statistics, 2024, Gross domestic product,
- https://insse.ro/cms/sites/default/files/com_presa/com_pdf/pib tr4r2024 1.pdf, Accessed on 15.03.2025
- [30]National Institute of Statistics, Agriculture, http://statistici.insse.ro/tempoins/index.jsp?page=tempo 3&lang=ro&ind=AGR200A
- [31]Eurostat Statistics Explained, Performance of the agricultural sector,
- https://ec.europa.eu/eurostat/statistics-
- explained/index.php?title=Performance_of_the_agricul tural_sector Accessed on 15.03.2025
- [32]World Bank, 2025, Rural population- 5 of total population, European Union, https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS ?locations=EU Accessed on 15.03.2025