

ANALYSIS OF FUNCTIONAL FOODS AND TRENDS IN THEIR DEVELOPMENT

Petia BRANZOVA

Economic Research Institute, the Bulgarian Academy of Sciences, Aksakov 3, 1000, Sofia, Bulgaria, E-mail: petia.branzova@gmail.com

Corresponding author: petia.branzova@gmail.com

Abstract

This study explores the role of functional foods within contemporary nutrition and health-oriented lifestyles. It discusses their scientific foundations, technological innovations, and regulatory frameworks, while offering a detailed SWOT analysis based on examples from countries such as Germany, France, Bulgaria, Japan, and the United States. The analysis draws on a range of sources, including scientific literature and institutional data from EFSA, WHO, and FDA. Methodologically, the work combines literature review, comparative analysis, and assessment of market trends. The findings suggest that functional foods contribute positively to metabolism, immune response, and cognitive health, though the sector faces notable challenges such as high production costs, strict regulations, and significant investment requirements. The study concludes that sustainable development in this field will require greater transparency, cross-border collaboration, and ongoing innovation.

Key words: functional foods, health benefits, technology and innovation, market trends and economic dynamics, regulatory framework.

INTRODUCTION

Functional foods have increasingly attracted attention from researchers and health professionals because of their potential to support human health and reduce the prevalence of chronic diseases. These products are being integrated into modern diets as consumers seek ways to enhance wellness through daily nutrition [3]. According to the scientific literature, functional foods are those that offer benefits to health that go beyond their basic nutritional value [4]. They are associated with improved physiological functions and may help to prevent various chronic conditions.

[24] considers the role of probiotics and prebiotics as essential components of functional foods, emphasizing their importance in the prevention of chronic diseases such as cardiovascular diseases and diabetes. In addition, [12] and [23] highlight the importance of probiotic foods in maintaining a healthy intestinal microflora, which is crucial for immune function. According to [9], functional foods not only improve physical health, but can also positively affect cognitive function and mental well-being. Recent

analyses reveal that probiotic and prebiotic foods are crucial in maintaining gut health and preventing conditions such as cardiovascular disease and diabetes. Their role in modulating the intestinal microbiota is especially important for immune response [14]. In addition, [19] and [16] examine the role of functional foods in the context of nutrigenomics and personalized nutrition, highlighting their potential to adapt to individual genetic needs. Functional foods are considered an important component of modern lifestyles, where disease prevention and maintenance of good health take center stage. The growing interest in functional foods is due to both scientific findings regarding their effectiveness and the increased attention to healthy eating and well-being [2]. In the past few years, as noted in the analysis by [14], the functional food sector has grown considerably, largely due to heightened public awareness of how diet influences overall health. The findings of [29] further confirm this expansion and reveal evolving consumer perceptions, reinforcing the conclusions drawn by [14]. In addition, [13] emphasizes the importance of functional foods for cognitive health and brain function. This growing interest in functional foods not only reflects the global trend towards a healthy lifestyle, but

also highlights the need for continued research and innovation in the field. [10] Understanding the complex interactions between food components and human health will be key to the development of future functional products that can effectively address the specific needs of different population groups.

In this context, the purpose of this article is to The aim is to present the scientific basis, innovative technologies and regulatory aspects of these foods, as well as an in-depth SWOT analysis, including examples from various countries.

MATERIALS AND METHODS

The materials include scientific articles, data from EFSA, WHO, FDA and BFSA, as well as market research from OECD, Statista and Euromonitor. The methods include a systematic literature review, analysis of regulatory documents and SWOT analysis of functional foods. The study period covers 2014-2024, with the main focus on Europe, the USA, Japan and Bulgaria.

RESULTS AND DISCUSSIONS

Definition and classification

Researchers have documented a connection between functional foods and enhanced metabolic health, including better blood lipid profiles and reduced inflammatory markers, making them valuable in chronic disease prevention strategies. According to the World Health Organization (WHO) [31], functional foods are "foods that have the potential to positively affect health beyond their basic nutritional content, while being consumed as part of the usual diet" [31]. Recent progress in areas such as nutrigenomics and individualized nutrition has made it increasingly feasible to design functional foods that reflect the biological characteristics of different consumer groups. This approach opens new possibilities for addressing distinct health priorities based on personal traits [6]. In the United States, the Food and Drug Administration (FDA) uses the term "foods with established health claims" to refer to ingredients with proven health benefits. The Japanese Food for Specific Health

Purposes (FOSHU) system was the first formal regulatory framework for functional foods, adopted in 1991 by the Japanese Ministry of Health and Welfare. This system requires scientific evidence of the health benefits of products and strict safety criteria before they can be approved for labeling as FOSHU. The criteria include clinical trials, toxicological analyses, and stability evaluation of active ingredients. The achievements of the FOSHU system have inspired the development of comparable regulatory approaches in other nations, including the European Union and the United States, both of which have adopted the Japanese framework as a foundation for their own standards on safety and effectiveness in functional foods. In Bulgaria, functional foods are regulated under the European Union regulatory framework and are recognized by the Bulgarian Food Safety Agency (BFSA). Under Regulation (EC) No 1924/2006 of the European Parliament and the Council, all functional foods marketed in Bulgaria are required to comply with stringent rules concerning labelling and health-related claims. In Bulgaria, the Food Safety Authority oversees the evaluation and authorization of health claims on functional food products, ensuring that they meet both European Union legislation and relevant national regulatory standards. According to the categorization systems of the European Food Safety Authority (EFSA) [6] and the World Health Organization (WHO) [31], functional foods fall into several core groups. 1. Probiotic and prebiotic products, which either supply live beneficial microorganisms or promote their proliferation within the gut. 2. Fortified foods - added vitamins, minerals or other bioactive compounds. 3. Functional beverages - contain antioxidants, vitamins or plant extracts. 4. Foods with a reduced content of harmful ingredients - for example, reduced content of saturated fat, salt or sugar. This classification allows a clear distinction between different types of functional foods and facilitates the understanding of their impact on health and their role in the diet.

Functional foods are emerging as an important part of the modern food industry, supported by research and innovation. A brief introduction

to this section highlights the importance of these foods for health and the economy, which will be discussed in detail below.

Health Benefits

Functional foods exert a wide range of beneficial effects on human health — a fact consistently demonstrated by scientific research and acknowledged by leading health authorities. The World Health Organization (WHO) notes that incorporating such foods into the daily diet can play a substantial role in lowering the risk of chronic diseases and enhancing overall health outcomes [31]. 1. Digestive health support: Products enriched with probiotics like *Lactobacillus* and *Bifidobacterium* contribute to a balanced intestinal microbiota. In turn, prebiotics such as inulin and fructooligosaccharides (FOS) serve as substrates that promote the proliferation of these beneficial microbes, thereby aiding digestion and nutrient absorption [12]. 2. Supporting immune health: A number of functional foods contain compounds with antioxidant properties—such as vitamins C and E, various carotenoids, and polyphenols—that contribute to the body's ability to manage oxidative processes. Their presence may help the immune system function more effectively and reduce the impact of inflammation [2]. 3. Cardiovascular protection: Ingredients such as omega-3 fatty acids, plant sterols, and dietary fiber have been linked to improved lipid profiles and regulated blood pressure. Regular intake of these components has been associated with a lower incidence of heart attacks and strokes, as supported by clinical findings [17]. 4. Bone health maintenance: Functional foods fortified with calcium and vitamin D contribute to the preservation of bone density and dental integrity. Their role in reducing the likelihood of conditions such as osteoporosis is well-documented in nutritional science literature [30]. 5. Weight management and metabolic regulation: Functional foods that are high in dietary fiber and low in energy density can enhance the feeling of fullness and help stabilize blood glucose levels. Such effects are particularly valuable for individuals struggling with excess weight or managing type 2 diabetes [27]. 6. Cognitive and psychological

benefits: Certain functional food components — notably omega-3 fatty acids and B-group vitamins — have demonstrated potential in supporting brain health and lowering the risk of neurodegenerative conditions like Alzheimer's disease [13].

Beyond their nutritional value, functional foods contribute significantly to disease prevention and overall well-being, establishing themselves as a cornerstone of contemporary health-conscious lifestyles.

Production technologies

The creation of functional foods requires the application of advanced technologies and innovative methods that guarantee the preservation and effectiveness of active ingredients. The development of these technologies is key to the production of products with high biological value and stability. 1. Microencapsulation: This technology involves encapsulating bioactive compounds in microscopic capsules that protect the active substances from degradation during processing, storage and consumption. This allows for the controlled release of the active ingredients into the body [11]. 2. Nanotechnology: The use of nanoparticles to improve the bioavailability and effectiveness of nutrients is becoming increasingly common in the production of functional foods. Nanotechnology allows the creation of foods with improved texture, taste and digestibility [25]. 3. Biotechnology: Genetic modification and the use of biocatalysts to produce functional ingredients such as enzymes, probiotics and vitamins are among the leading biotechnological methods in this field [26]. 4. Fortification and enrichment: The addition of vitamins, minerals and other bioactive compounds to food products is a common method for creating functional foods. This process ensures that the products provide additional health benefits [1]. 5. Fermentation processes: Traditional and modern fermentation techniques are used to create probiotic products and foods with improved nutritional properties. Fermentation increases the bioavailability of some nutrients and improves the palatability of the products [18]. 6. Extrusion and texturization: Technologies such as extrusion are used to create foods with

the desired texture and shape, while maintaining the functional properties of the added ingredients [15]. By incorporating these advanced technologies into the manufacturing process, producers are able to develop innovative functional food products that align with contemporary consumer expectations for health-oriented and nutritionally enhanced choices.

Regulatory aspects

Regulating functional foods is a multifaceted task that differs across jurisdictions and encompasses a wide range of standards concerning product safety, labelling practices, and permitted health claims. The primary objective of regulatory authorities is to ensure that functional foods are safe to consume and that the health benefits claimed are scientifically substantiated. 1. European Union (EU): In the EU, functional foods are regulated under Regulation (EC) No 1924/2006 on nutrition and health claims made on foods [5]. The European Food Safety Authority (EFSA)[6] is responsible for evaluating the scientific evidence related to functional foods before they are approved for labeling. Health claims must be supported by reliable clinical studies and meet strict criteria for accuracy and clarity. 2. United States of America (USA): In the United States, the Food and Drug Administration (FDA) is responsible for regulating functional foods. Products bearing approved health claims must adhere to the standards established by the Food, Drug, and Cosmetic Act. In addition, the Federal Trade Commission (FTC) monitors the accuracy of marketing claims related to functional foods. 3. Japan: The Japanese Food for Specific Health Purposes (FOSHU) system was the first formal regulatory framework for functional foods, introduced in 1991. The Japanese Ministry of Health, Labor and Welfare requires scientific evidence of the safety and effectiveness of products before they can be approved for labeling. 4. Bulgaria: In Bulgaria, functional foods are regulated in accordance with the EU regulatory framework. The Bulgarian Food Safety Agency (BFSA) is responsible for overseeing the production, labeling and marketing of functional foods in the country. All health claims must comply with European

regulations and be supported by scientific evidence. 5. International standards: The Codex Alimentarius, a joint initiative of the WHO and FAO, offers internationally recognized standards and guidelines for the safety and labeling of functional foods. These standards serve as the basis for national regulations in many countries around the world. Regulating functional foods plays a vital role in safeguarding consumer health and verifying the safety and effectiveness of such products. Adherence to both international and national standards is essential for building consumer trust and supporting the growth of the functional foods market.

Market Trends and Innovations

Over the last ten years, the functional food market has expanded significantly, largely driven by growing public interest in the relationship between diet and health. Data from the OECD [22] indicate that the global market reached around USD 282 billion in 2023, with projections suggesting it could exceed USD 400 billion by 2027. In Europe, the sector is expected to grow from EUR 80 billion to approximately EUR 110 billion over the same period, reflecting steady annual growth of about 7–9%. According to the Organization for Economic Cooperation and Development (OECD), the consumption of functional foods in Europe grew by 6% per year between 2018 and 2023, with the highest growth observed in Western European countries. Leading markets in Europe are Germany, France, Italy and Spain, where consumer demand for healthy products continues to grow. 1. Rising interest in sustainability and environmentally conscious production has led more consumers to opt for plant-based and organic functional foods. According to data from Statista [28] and Euromonitor [7], demand for such products in Europe and North America rose by 12% in 2022—a trend that is expected to persist in the coming years. With increasing attention to sustainability and environmentally friendly production, consumers are increasingly choosing plant-based and organic functional foods. This trend is particularly strong in Europe and North America, where there are strict regulations and consumer demand for organic certified products. 2. Personalized

nutrition: The rise of genetic-based dietary approaches has led to a noticeable shift in consumer demand for foods designed to reflect personal health data. Industry reports from 2021 indicate that companies offering such customized nutrition solutions have seen sales increases of around 15%, reflecting a growing market interest in precision-based dietary interventions. Advancements in nutrigenomics and personalized healthcare have sparked growing consumer interest in functional foods designed to match individual genetic profiles and metabolic characteristics. Today, the industry delivers tailored nutritional solutions informed by DNA testing and personal health data.

3. Adoption of emerging technologies: The incorporation of nanotechnology and biotechnology into functional food production enables the development of products with enhanced nutrient absorption and increased physiological impact. Data from Statista shows that investments in nanotechnology for the food industry have increased by 10% in the last three years. The use of nanotechnology and biotechnology in functional food production enables the development of products with enhanced nutrient absorption and greater physiological impact. In addition, these technologies help improve flavor profiles and prolong shelf life, making the products more appealing and commercially viable.

4. Expanding product categories: While traditional functional foods like yogurt and fortified cereals remain widely consumed, the market has expanded to include newer formats such as drinks, snack items, and dietary supplements. Statista reports that functional beverages, in particular, have shown the most dynamic growth globally, with an average annual increase of 11%. Traditional functional foods such as yogurt and breakfast cereals are being complemented by new categories such as functional beverages, snacks and supplements. This diversification meets the different needs and preferences of consumers.

5. Emphasis on mental well-being: As public understanding deepens regarding the connection between diet and mental health, the market has seen a notable rise in functional food products targeting cognitive enhancement, stress reduction, and mood improvement. According

to Euromonitor, sales of such items in Europe increased by 9% in 2022 [7].

6. Increasing investment and strategic partnerships: Global companies and startups are investing significant resources in the development of innovative functional products. According to Statista, investment in innovation in the functional food sector increased by 14% between 2020 and 2023. Global companies and startups are investing significant resources in the development of innovative functional products. Strategic partnerships between scientific institutions and industry are accelerating the introduction of new technologies and products to the market. These developments suggest that functional foods are poised to remain a key segment within the food industry, providing innovative approaches to enhance health and quality of life both globally and within specific regions. Different countries around the world are taking specific approaches to developing and marketing functional foods:

- **Germany:** Manufacturers are focusing on probiotic and prebiotic-enriched products, such as yogurts and fermented dairy products, popular with consumers seeking improved digestive health.
- **France:** Food manufacturers focus on products enriched with omega-3 fatty acids—such as margarine and dairy items—designed to support heart health.
- **Bulgaria:** Traditional fermented dairy products like yogurt are recognized for their probiotic effects. In addition, local producers have introduced herbal teas with functional properties, often created in collaboration with phytotherapy experts to address specific health concerns.
- **Japan:** A global pioneer in functional nutrition, Japan developed the FOSHU system and markets a variety of fiber-rich beverages for digestion and products aimed at managing blood pressure.
- **USA:** Characterized by a highly diverse and innovation-driven market, the United States offers functional products ranging from vitamin-fortified cereals to antioxidant-rich beverages aimed at holistic well-being.

These examples illustrate the wide variety of strategies employed worldwide in the functional food sector. To better understand the

current market status and future potential, the following SWOT analysis outlines core strengths and weaknesses, as well as the primary opportunities and threats facing the industry today.

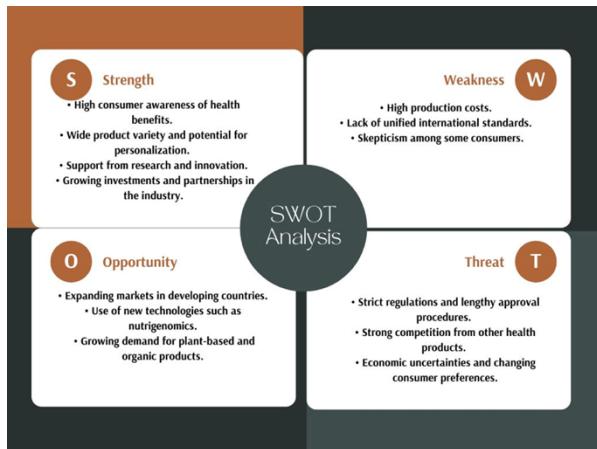


Fig.1. SWOT Functional food
 Source: Own design and conception.

The SWOT analysis (Fig. 1) of functional foods highlights the significant potential of this market segment, driven by high consumer awareness and scientific support for the benefits of these products. Despite high production costs and the lack of globally uniform standards, innovation and growing demand create a favorable environment for development. Regulatory challenges and competition require strategic decisions but expanding markets and the introduction of new technologies offer sustainable growth opportunities. Companies that invest in transparency, quality and adaptability will be best positioned to succeed in this dynamic sector.

Economic Dynamics of the Functional Food Market in Bulgaria (2014–2024)

The Bulgarian functional food market has shown consistent growth over the 2014–2024 period. This upward trend is largely driven by growing public awareness of the link between diet and health, the expanding influence of organic and vegan lifestyles, and an overall increase in product availability from domestic producers. Although still modest compared to Western Europe, the Bulgarian market shows potential in several key segments (Table 1).

Table 1. Market Indicators of Functional Foods in Bulgaria (2014–2024)

Product Group	Indicator	2014	2019	2024	Average Annual Growth (%)
Fruits	Consumption (thousand tons)	450	560	630	3.5%
	Raspberry production (thousand tons)	5	12	18	13%
Nuts	Market volume (million BGN)	50	85	120	8%
	Cashew imports (thousand tons)	1.2	2.5	3.8	9%
Seeds	Market volume (million BGN)	10	25	40	12%
	Chia imports (tons)	50	200	350	15%
Vegetables	Broccoli consumption (thousand tons)	2	5	8	11%
	Organic vegetables market (mil. BGN)	15	30	50	10%
Legumes	Market volume (million BGN)	20	35	55	9%
	Chickpea imports (thousand tons)	0.5	1.5	2.5	14%

Sources: Own design and conception by data from NSI (<https://www.nsi.bg>) [21], MAF (<https://www.mzh.government.bg>) [20], Eurostat (<https://ec.europa.eu/eurostat>) [8], Euromonitor [7], Statista (<https://www.statista.com>) [25].

Functional Fruits (berries, apples, pears, oranges, bananas, etc.)

Over the past decade, the market for functional fruits in Bulgaria has shown consistent positive dynamics. Reports by NSI [21] and Eurostat [8] indicate that the consumption of fresh fruits increased by over 25% during 2014–2023, with the most significant growth seen in berries and bananas, recognized for their high antioxidant and fibre content. Imports of berries (blueberries, blackberries, raspberries) more than doubled, while domestic raspberry production tripled (from 5 thousand tons in 2014 to over 15 thousand tons in 2022). Apples and pears remain leading in terms of domestic production volume, although their

export share has declined due to low competitiveness. On the other hand, demand for organic-certified fruits and local varieties rich in polyphenols has increased, particularly in urban centres.

Nuts (almonds, cashews, etc.)

Nuts are positioned as a “superfood” in Bulgaria, with the market for almonds, cashews, and hazelnuts growing by an average of 8% annually between 2014 and 2023. As reported by BFSA and Euromonitor, imports of raw and unsalted nuts used in muesli and functional snacks have tripled. The largest increase is observed in cashews and pistachios, while traditional walnuts maintain a stable share, primarily from local production.

This growth is driven by increased consumption in the healthy and vegan food sectors, as well as the incorporation of nuts in functional bars and dairy alternatives (e.g., almond and cashew milk).

Seeds (sunflower, sesame, etc.)

Sunflower seeds are traditional in Bulgaria, but the past decade has seen diversification toward dehulled sunflower seeds and organic sesame, used in functional products. The seed market, including chia and flaxseed, has experienced exponential growth since 2017, particularly in urban areas.

Reports by retail chains and organic stores show that sales of functional seed mixes (granolas, smoothies, functional breads) have more than tripled over the decade.

Vegetables (broccoli, spinach, cauliflower, tomatoes, etc.)

Vegetables with proven antioxidant properties such as broccoli, kale, spinach, and tomatoes have become a focal point of consumer interest. In 2014, broccoli imports to Bulgaria were under 2 thousand tons, while in 2022 they exceeded 6 thousand tons. Local production is also increasing, albeit at a slower pace due to labour-intensive cultivation.

As reported by NSI and BFSA, demand for fresh and frozen functional vegetables rose by more than 40%, with main consumers being high-income families, restaurants, and catering services. The organic vegetable market is growing at 12% annually.

Legumes (beans, peas, lentils, etc.)

Bulgaria has a tradition of growing legumes, but the production of functional varieties with high protein and fibre content (e.g., red beans, black lentils) has developed only after 2018. Imports of high-protein peas and chickpeas have doubled over the period, with an increasing number of producers incorporating them into vegan alternatives – burgers, spreads, and flours.

Growth in this segment is supported by the popularity of vegan diets and sustainable eating. The market for chickpea-based products (e.g., hummus, falafel) has grown by 19% annually between 2019 and 2023.

Behavioural and Market Factors Influencing the Development of the Functional Food Market in Bulgaria

Shifts in consumer perceptions and habits have played a crucial role in driving the increased demand for functional foods in Bulgaria throughout the 2014–2024 period. Over this decade, several distinct transformations have emerged, shaped both by global processes and by specific internal dynamics within the socio-economic environment.

First, contemporary Bulgarian society demonstrates increasing health awareness, reflected in interest toward foods with proven or perceived benefits for strengthening the immune system, regulating metabolism, improving digestion, and enhancing cognitive function. This interest intensified as a result of the epidemiological crisis caused by COVID-19, which catalysed a shift in attitudes toward prevention through nutrition. As a result, the consumer base for functional foods has expanded beyond niche groups such as athletes, vegans, and individuals with specific dietary needs.

Second, demographic and social characteristics play a significant role in shaping market behavior. Analysis shows that the typical consumer of functional foods in Bulgaria is a member of the urban middle class, aged between 25 and 45, with higher education and an active interest in new dietary practices and innovations. Women dominate among regular consumers, with a ratio of approximately 3:2 compared to men. A relatively higher concentration of consumers is observed in the capital and major university cities (Plovdiv,

Varna, Veliko Tarnovo), where access to specialized stores, organic-certified products, and information channels is more developed. Third, new distribution and marketing channels have emerged in the market context, enhancing the accessibility and recognition of functional foods. Alongside the expansion of organic sections in large retail chains, increasing significance is seen in:

- online food delivery platforms and “functional food box” services;
- farmers’ markets with short supply chains;
- influencer marketing via social networks, which strengthens the emotional connection between product and consumer.

Finally, market trends show substantial flexibility among producers, who adapt their offerings to changing demand through innovative formats: mini packages, “on-the-go” food options, probiotic desserts, beverages with bioactive ingredients, and more. This adaptation contributes to the differentiation of functional products from mass-market goods and to the enhancement of their market value.

Institutional Support and Regulatory Environment

The development of the functional food market in Bulgaria cannot be considered in isolation from the institutional framework that defines the conditions for production, certification, marketing, and consumption. Between 2014 and 2024, a gradual evolution has been observed in national policies and regulations aimed at promoting sustainable agriculture, innovation in the food industry, and encouragement of biodiversity in diets.

A significant role is played by the Rural Development Programme (RDP), which in the 2014–2020 and 2021–2027 programming periods provides targeted financial support for:

- transitioning to organic agriculture;
- investments in modernization of production and processing facilities;
- support for young farmers, including in the fruit, nut, and legume sectors.

As reported by data from the Ministry of Agriculture, by the end of 2022, over 280 projects related to organic production of functional crops had been funded, with nearly 40% concentrated in Southwestern and South Central Bulgaria- regions with favorable

climatic and agronomic conditions. A significant portion of these projects have led to the creation of new jobs, improved environmental standards, and the achievement of high added value through certified functional products.

In regulatory terms, the Bulgarian Food Safety Agency (BFSA) implements EU legislation (Regulation (EC) No 1924/2006), which defines the requirements for nutrition and health claims. However, the absence of a national register of functional foods and the lack of a coordinated information platform hinder informed consumer choices and complicate market orientation for producers. It is necessary to establish a more clearly defined institutional environment that:

- defines the concept of “functional food” in the national context;
- accelerates the procedures for evaluation and registration of new products;
- provides incentives for research in the fields of nutrigenomics and clinical evaluation of functional effects.

Only through strategic synergies between agricultural, health, education, and scientific policies can Bulgaria realize the full potential of functional foods as a driver of economic growth, public health, and ecological sustainability.

The analysis of market dynamics of functional foods in Bulgaria during 2014–2024 reveals several key conclusions outlining the current state, specific trends, and strategic development opportunities in this segment of the agri-food industry.

First, a clear acceleration of market growth for functional foods is observed, especially in the segments of fresh fruits, nuts, and legumes. This is due both to increasing consumer demand driven by a desire for healthy living and to structural changes in supply—including the expansion of organic-certified production areas and the introduction of innovative product formats (e.g., functional snacks and drinks, fortified breads, and smoothies).

Second, the integration of new groups of functional foods—such as chia seeds, flaxseed, baby spinach, and chickpeas—reflects not only a shift in consumer attitudes but also producers’ adaptability to global trends in

sustainable, plant-based, and personalized nutrition. It is especially notable that this growth is occurring under conditions of still limited processing infrastructure, highlighting the latent potential for increasing domestic added value.

Third, it was found that the main success factors for functional foods in Bulgaria include access to organic certification, effective communication of health claims, innovative commercial vision (including online channels and short supply chains), and the ability of producers to combine traditional agricultural crops with new technological solutions.

In light of these findings, evidence-based recommendations for sustainable sector development can be formulated as follows:

First, it is necessary to establish an institutional framework for functional foods in Bulgaria that clearly defines the criteria for health claims, harmonizes labelling with European requirements, and ensures control over market transparency. This would help increase consumer trust and create more effective links between producers, distributors, and end customers.

Second, efforts to support organic farming and the processing industry should be strengthened through the promotion of public-private partnerships, targeted investment tools, and innovation hubs for functional foods. Priority should be given to small and medium-sized producers who demonstrate the ability to implement sustainable, eco-friendly, and socially responsible practices.

Third, it is recommended to conduct systematic multidisciplinary research to validate the health effects of local functional foods, using methods from nutrigenomics, metabolomics, and functional medicine. This will enhance the scientific value and international competitiveness of Bulgarian products.

Finally, it is essential to invest in educational and information campaigns aimed at improving the population's health literacy and fostering a culture of informed food choices. Only through an integrated approach combining science, economy, regulation, and consumer interests can the sustainable development of the functional food sector in Bulgaria be achieved.

CONCLUSIONS

Functional foods are an important component of modern nutrition, offering healthy solutions and market opportunities. This analysis provided an in-depth overview of the sector, highlighting challenges such as high costs and regulatory requirements, but also opportunities for innovation and growth. Successful development depends on continuous scientific research, adaptation to dynamic consumer needs and effective regulation. Synergy between industry, regulators and consumers is essential to create a transparent and sustainable environment. The analysis showed that functional foods can be a driver of innovation in the food industry, combining health benefits, technological advancements and effective market positioning. Expanding markets, especially in emerging economies, and adapting to environmental and social requirements are key for future development. Increased cooperation between manufacturers, regulators and the scientific community is recommended, as well as greater investment in education and consumer awareness. Successful implementation of these strategies will ensure sustainable development and long-term success, meeting expectations for quality, safety and innovation.

REFERENCES

- [1]Allen, L., de Benoist, B., Dary, O., Hurrell, R., 2006, Guidelines on food fortification with micronutrients. World Health Organization.
- [2]Calder, P. C., 2013, Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? *British Journal of Clinical Pharmacology*, 75(3), 645-662. PMID: 22765297
- [3]Dimitrova, A., 2024, Risk Management in Production Structures – Realities, Challenges and Opportunities. *Economic Thought Journal*, 3, 353-366.
- [4]Diplock, A. T., Aggett, P. J., Ashwell, M., Bornet, F., Fern, E. B., Roberfroid, M. B., 1999, Scientific Concepts of Functional Foods in Europe: Consensus Document. *British Journal of Nutrition*, 81(S1), S1–S27
- [5]European Commission. Nutrition and health claims on food products – regulatory framework. https://ec.europa.eu/food/safety/labelling_nutrition/claims/nutrition_claims_en Accessed on 5 February 2025.
- [6]European Food Safety Authority (EFSA), 2009, Scientific opinion on the substantiation of health claims related to functional foods. *EFSA Journal*, 7(9), 1229. <https://doi.org/10.2903/j.efsa.2009.1229> 1-20.

[7]Euromonitor. <https://www.euromonitor.com/>, Accessed on 5 February 2025.

[8]Eurostat, <https://ec.europa.eu/eurostat>, Accessed on 5 February 2025.

[9]Ferguson, L. R., 2009, Nutrigenomics approaches to functional foods. *Journal of the American Dietetic Association*, 109(3), 452-458.

[10]Georgieva, D. V., 2024, Opportunities and challenges regarding enterprise participation in global value chains for the development of Bulgarian regions.

[11]Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., Saurel, R., 2007, Applications of spray-drying in microencapsulation of food ingredients: An overview. *Food Research International*, 40(9), 1107-1121

[12]Gibson, G. R., Roberfroid, M. B., 1995, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. *The Journal of Nutrition*, 125(6), 1401-1412.

[13]Gómez-Pinilla, F., 2008, Brain foods: the effects of nutrients on brain function. *Nature Reviews Neuroscience*, 9(7), 568-578.

[14]Granato, D., Barba, F. J., Cruz, A. G., Putnik, P., Kovacevic, D. B., 2020, Functional foods: Product development, technological trends, efficacy testing, and safety. *Trends in Food Science & Technology*, 101, 242-255. PMID: 30792463

[15]Guy, R., 2001, Extrusion cooking: Technologies and applications. Woodhead Publishing. ISBN: 9781855735590

[16]Ionescu, A., Marin, D., 2022, Nutrigenomics and personalized nutrition in the EU, *Management Journal*, 22(2), 102-113.

[17]Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., Griet, A. E., Etherton, T. D., 2002, Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. *The Journal of Nutrition*, 132(3), 767-770. <https://doi.org/10.1093/jn/132.3.767>

[18]Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Hutkins, R., 2017, Health benefits of fermented foods: microbiota and beyond. *Current Opinion in Biotechnology*, 44, 94-102.

[19]Martirosyan, D. M., Singh, J., 2015, A new definition of functional food by FFC: what makes a new definition unique? *Functional Foods in Health and Disease*, 5(6), 209-223.

[20]Ministry of Agriculture and Food, MAF, <https://www.mzh.govment.bg>, Accessed on 5 February 2025.

[21]National Statistical Institute, NSI <https://www.nsi.bg>, Accessed on 5 February 2025.

[22]OECD, 2023, Consumption of functional foods in Europe: Trends and projections. <https://www.oecd.org/health/health-systems/consumption-of-functional-foods.htm> Accessed on 5 February 2025.

[23]Popescu, L., Georgescu, M., Stan, C., Iancu, V., 2023, Probiotic dairy products and gut health, *Management Journal*, 23(1), 45-55.

[24]Roberfroid, M. B., 2000, A European consensus of scientific concepts of functional foods. *Nutrition*, 16(7-8), 689-691

[25]Silva, H. D., Cerqueira, M. A., Vicente, A. A., 2012, Nanoemulsions for Food Applications: Development and Characterization. *Food and Bioprocess Technology*, 5(3), 854-867.

[26]Singh, R. S., Singh, T., Kennedy, J. F., 2017, Biotechnological approaches for functional food production. *Critical Reviews in Food Science and Nutrition*, 57(13), 2739-2758.

[27]Slavin, J. L., 2005, Dietary fiber and body weight regulation. *Nutrition*, 21(3), 411-418. <https://doi.org/10.1016/j.nut.2004.08.018>

[28]Statista, 2024, Global functional food market size from 2020 to 2027. <https://www.statista.com/statistics/1094310/global-functional-food-market-size/> Accessed on 5 February 2025.

[29]Vasilescu, R., Petrescu, S., Dumitru, E., 2021, Market growth and consumer attitudes towards functional foods in Europe, *Management Journal*, 21(3), 78-89.

[30]Weaver, C. M., 2014, How sound is the evidence that bone strength can be enhanced through dietary factors? *Journal of Nutrition*, 144(4), 481-486. <https://doi.org/10.3945/jn.113.180588>

[31]World Health Organization, 2004, Food and health in Europe: A new basis for action (WHO Regional Publications, European Series, No. 96. World Health Organization Regional Office for Europe. ISBN: 928901363X.32-35