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Abstract

The proposed correlation coefficient better characterize the statistical independence of two random variables that are a
linear mixture of two independent sources. This correlation coefficient can be calculated with analytical relations or
with the known algorithms of independent components analysis (ICA). The value of the correlation coefficient is zero

when the random variables are a statistically independent and it is one when these are fully dependent.
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INTRODUCTION

The dependences between two random variables
and is represented generally by a correlation
relation and the commonly used is the Pearson
correlation coefficient[1]:
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where E is the expectation operator and ¢ is the
standard deviation of a random variable :

o (%) = E| (- E[5]) |

The correlation coefficient (1) has a simpler
relation:
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The simplest situation is when x;, x; are a linear
mixture of two statistically independent
normalized random variables s;, s; named
sources:

X, =08, +4;,°8,, X, =058, +dy S,

5
In this case the correlation coefficient between
X1, X2 is:

p(x],xz):a” "y T ay, - ay,
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Assuming that the unit vectors along the x,y axis
corresponds to s;, s, and x;, X, are given by (5)
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then x; can be represented in a [1° space by the
vector [a;1, aiz] and x; by the vector [ay;, az].
With this representation the correlation
coefficient (6) can be represented geometrically
as the scalar product between x; and x;.
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Fig. 1. The dependence of x;, X, on s, s5. On the x ax
that corresponds to s, the coefficients ay;, a;, are
represented. On the y ax that corresponds to s s,, the

coefficients ay;, ay, are represented.

Due to the fact that x;, X, are normalized then
an*+ap’=1 and a»*+ an’=1. In this case the
relations (5) can be rewritten as:

X, =s,cos(@)+s,sin(a)

X, =s,cos( B)+s,sin( B) @



where the o, £ are the angles formed by x;, x,
with the x ax respectively.
Using (7) the correlation coefficient takes a very
simple trigonometric form:

p(XI,X2)=COS(a—ﬂ) (8)

In the case when both x;, X, have a Gaussian
distribution or any one of the coefficients a;j,
aiz az; and ax equals to zero, then the absolute
value of the correlation coefficient measure the
statistical dependence between the random
variables xi, X,. In this case if the correlation
coefficient is zero then x;, X, are statistically
independent. In the other cases the correlation
coefficient may not correctly show the statistical
dependence between x; and x;.

For example the Pearson’s correlation
coefficient expressed by Eq. (8) is zero in the
case when the random variables are
“orthogonal”:

a—ﬂ:%+k~7r, kel )
In this case the variables x;, X, are not statistical
independent if in (8) a # +kn/2 and quite
dependent in the particular case when a = n/4
and f =a-+m/2:

X=£(S+S) X :Q(s—s)
1 2 1 2)» 2 2 1 2 (10)‘
MATERIAL AND METHOD

The random variables x;, x, given by (5), are
independent, when ay1a1, = 0 and az1a, = 0. In
this case, but not only, the Pearson correlation
coefficient (6) is zero. It would be therefore
useful to provide an indicator, which is different
from zero when the variables x; and x, are
dependent but the Pearson coefficient is zero.
The new correlation coefficient that we propose
is defined with the following formula:
R(x;,x,) = |a“ ~a21|+|a12 ’a22| (11)

The value of R is zero only when the random
variables (5) are statistical independent and one
when these are fully dependent. It has be noted
with the Latin letter R similar with the
correlation coefficient that is usually noted with
the Greek letter p.

By using (7) the correlation coefficient R can be
expressed as:

R(x,,x,) = max{|cos(a —ﬂ)|, |cos(a + ﬂ)|} (12)
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It can be noticed that the Pearson correlation
coefficient expressed as in Eq.(8) is the same
with R when:

|cos(a - ﬂ)| >|cos(a + ﬂ)| (13)
On Fig. 2 is represented the particular case
when x;, x, are orthogonal B=o+(2k+1)n/2. In

this case the Pearson’s correlation coefficient
(8) is zero but, R may vary from O to 1:

R(x,,x,) =[sin(2- )

i ﬂ:ai(2k+l)%, kell (14)
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Fig. 2. The dependence of two orthogonal random
variables X, X, on s, s2. The x, y axis corresponds to s,
s2.

When a = /4 then R=1 and x;, x; are in the
most dependent situation. Other particular cases
are when R=1/2 when o = m/12 and R=V3/2
when o = /6.
The random variables x;, x; are fully dependent
and R=1 when:

R(x,,X,) =sin(a)’ +cos(a)’ =1,
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p=ra+k-m, kel (15)

The correlation coefficient R can be calculated
by Eq. (11) if xj, x, are separated into
independent components by using an
independent  components analysis  (ICA)
algorithm [2-4].

R may be calculated also with Eq. (12) in which
case, what is needed is, to evaluate cos(a+p),
cos(a-f) being known via(8).

To compute R with (12) is necessary to know
the value of:

r(x,,X,) =cos(a+f3) (16)
Analytical solution for 7(x, x2) is:
COS(t)Z :k4o_2kzz+ko4 (17)
k40 + 2k22 + k04
where:

ki = E[0} |3, ky, = E[ 05 ] -3,

(18)
ky, = E[olzoz2 ] -1

Egs. (17), can be obtained only when the
following condition is fulfilled:
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For a Gaussian source E[s4]= 3 and in this case
if both sources s;, s, are Gaussian (19) is not
fulfilled. If for one of the sources E[sl4]<3 and
for the other E[s,']>3 such as (19) is not
fulfilled then the solution cannot be calculated
with (17). Also in the case when one of the
sources are a mixture of two random variables
such as E[s;*]=3 and the other source is or not
Gaussian but for it also E[s,']=3 then the
solution cannot be computed with (17).

When (19) is fulfilled R can be calculated
knowing tan(f) obtained with the Comon’s
relation [5] or with the alternative Comon’s
formula (ACF)[8,3,14]:

k22

tan(t) = (20)

31 M3

where:
ky =E[00, ], k;=E[00,"] 21)
The best results are obtained with the following
relation:
4(k31 _k13)

tan(2¢) =
k40 - 6k22 + k04

(22)

The above relation is known as the approximate
maximum likelihood (AML) estimator [10-
12,5]. This relation can also be obtained by
combining E[0,0,°] and E[o,’0,. Additionally
the condition (19) need to be fulfilled.

RESULTS AND DISCUSSIONS

R corrects the Pearson’s correlation coefficient
only when all the coefficients a;;, a2, az1 and
ay in (5) are different from zero. If one of these
coefficients equal zero then the system (5)
reduces to:
X, =8, X,=a,"8+4a,"S§,

(23)

and the two correlation coefficients gives the
same result.

The correlation matrix p and R between the
changing rates of different currency are
presented in the Tab. 1 and 2 respectively. The
difference between p and R is presented in
Table 3.

A general remark is that there are enough cases
where p has been corrected by R to justify the
use of the new correlation coefficient. In this
example the corrected correlation R has a
greater value than p.

TABLE 1.CORRELATION MATRIX

gold | SUSA | € EUK | fSw | $Ca | $SAu
gold 0.996 | 0.953 | 0.230 | 0.854 | 0.860 | 0.940 | 0.916
$USA | 0.953 | 0.996 | 0.196 | 0.833 | 0.820 | 0.964 | 0.877
€ 0.230 | 0.196 | 0.996 | 0.562 | 0.479 | 0.085 | 0.187
£UK | 0854 | 0.833 [ 0.562 | 0.996 | 0.915 | 0.765 | 0.801
fSw 0.860 | 0.820 | 0.479 | 0.915 | 0.996 | 0.785 | 0.878
$ Ca 0.940 | 0.964 | 0.085 | 0.765 | 0.785 | 0.996 | 0.927
$ Au 0916 | 0.877 | 0.187 | 0.801 | 0.878 | 0.927 | 0.996
TABLE 2.CORRECTED CORRELATION MATRIX
gold | SUSA | € EUK | fSw | $Ca | SAu
gold 0.996 | 0.983 | 0.286 | 0.999 | 0.906 | 0.940 | 0.954
$USA | 0.983 | 0.996 | 0.279 | 1.000 | 0.996 | 0.964 | 0.977
€ 0.286 | 0279 | 0.996 | 0.562 | 0.479 | 0.085 | 0.249
£UK | 0999 | 1.000 | 0.562 | 0.996 | 0.993 | 0.984 | 1.000
fSw 0.906 | 0.996 | 0.479 | 0.993 | 0.996 | 0.999 | 0.969
$ Ca 0.940 | 0.964 | 0.085 | 0.984 | 0.999 | 0.996 | 1.000
$ Au 0.954 [ 0.977 | 0.249 | 1.000 | 0.969 | 1.000 | 0.996
TABLE 3.THE DIFFERENCE BETWEEN THE TWO
CORRELATION COEFFICIENTS
gold |§$ € £UK | fSw | $Ca | $Au
USA
gold 0.000 | - - - - 0.000 | -
0.030 | 0.056 | 0.145 | 0.046 0.039
$ - 0.000 | - - - 0.000 | -
USA | 0.030 0.083 | 0.167 | 0.176 0.100
€ - - 0.000 | 0.000 | 0.000 | 0.000 | -
0.056 | 0.083 0.062
£UK | - - 0.000 | 0.000 | - - -
0.145 | 0.167 0.078 | 0.219 | 0.199
fSw | - - 0.000 | - 0.000 | - -
0.046 | 0.176 0.078 0.214 | 0.090
$Ca | 0.000 | 0.000 | 0.000 | - - 0.000 | -
0219 | 0.214 0.073
$Au | - - - - - - 0.000
0.039 | 0.100 | 0.062 | 0.199 | 0.090 | 0.073
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As was expected there are also a lot of cases
where the data structure has the simple form as
in (23) which case the two correlation
coefficients gives the same or very close results.
For example in the 5 row of table 3 the
dependence of the Canadian $ on gold, USA $
and € has a simple structure but, the dependence
on the £ UK and Swiss franc is complex it
impose the use of the new correlation
coefficient.
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Fig. 3. The time dependence of the correlation coefficients p and R
between € and the gold price and § USA.

The time dependence of the correlation
coefficients is represented in Fig. 3. One can
observe that if the data of the gold price and
USA § are shifted in the past with 0...6 days the
values of the two correlation coefficients are the
same. This indicates that the data structure in
these cases has the simple form(23).

The data structure changes if the same data
(gold price and USA $) is shifted in the future
with 1...8 days. This example shows that if the
data structure is not priory known is better to
use the new correlation coefficient.

CONCLUSIONS

The proposed correlation coefficient R corrects
the Pearson relation and show the statistical
dependence between two random variables that
are a linear mixture of two independent sources.
R can be calculated with analytical relations or
can be obtained by ICA algorithms also. Beside
the known relation to calculate R a new
analytical relation has been proposed (17).

There are situations when the random variables
does not satisfy the condition (19) and R needs
to be calculated using ICA algorithms [7].

Even if to compute R is a little bit more
complicate than to calculate the correlation
coefficient the advantage to know it (R) are
considerable. In many cases the random
variables does not have the simple structure of
(23) and the Pearson’s correlation coefficient
may give inaccurate values.
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In economics, stock market [9] and other fields
the dependences between different random
variables cannot always be correctly evaluated
with the correlation coefficient but R can easily
clarify the problem.
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